flavin-adenine-dinucleotide and daidzein

flavin-adenine-dinucleotide has been researched along with daidzein* in 1 studies

Other Studies

1 other study(ies) available for flavin-adenine-dinucleotide and daidzein

ArticleYear
Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones.
    Journal of bioscience and bioengineering, 2018, Volume: 126, Issue:3

    S-Equol is a metabolite of daidzein, a type of soy isoflavone, and three reductases are involved in the conversion of daidzein by specific intestinal bacteria. S-Equol is thought to prevent hormone-dependent diseases. We previously identified the equol producing gene cluster (eqlABC) of Eggerthella sp. YY7918. Daidzein reductase (DZNR), encoded by eqlA, catalyzes the reduction of daidzein to dihydrodaidzein (the first step of equol synthesis), which was confirmed using a recombinant enzyme produced in Escherichia coli. Here, we purified recombinant DZNR to homogeneity and analyzed its enzymological properties. DZNR contained FMN, FAD, and one 4Fe-4S cluster per 70-kDa subunit as enzymatic cofactors. DZNR reduced the CC bond between the C-2 and C-3 positions of daidzein, genistein, glycitein, and formononetin in the presence of NADPH. R-Dihydrodaidzein and R-dihydrogenistein were highly stereo-selectively produced from daidzein and genistein. The K

    Topics: Actinobacteria; Coenzymes; Equol; Escherichia coli; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Genistein; Humans; Iron; Isoflavones; NADP; Oxidoreductases; Oxidoreductases Acting on CH-CH Group Donors; Protein Multimerization; Protein Structure, Quaternary; Protein Subunits; Stereoisomerism; Sulfur

2018