flavin-adenine-dinucleotide and 5-methyltetrahydrofolate

flavin-adenine-dinucleotide has been researched along with 5-methyltetrahydrofolate* in 2 studies

Other Studies

2 other study(ies) available for flavin-adenine-dinucleotide and 5-methyltetrahydrofolate

ArticleYear
Radioenzymatic assay for reductive catalysis of N(5)N(10)-methylenetetrahydrofolate by methylenetetrahydrofolate reductase.
    Journal of biochemical and biophysical methods, 2000, Nov-20, Volume: 46, Issue:1-2

    Methylenetetrahydrofolate reductase catalyzes the reduction of N(5), N(10)-methylenetetrahydrofolate to N(5)-methyltetrahydrofolate. Because this substrate is unstable and dissociates spontaneously into formaldehyde and tetrahydrofolate, the customary method to assay the catalytic activity of this enzyme has been to measure the oxidation of [14C]N(5)-methyltetrahydrofolate to N(5), N(10)-methylenetetrahydrofolate and quantify the [14C]formaldehyde that dissociates from this product. This report describes a very sensitive radioenzymatic assay that measures directly the reductive catalysis of N(5),N(10)-methylenetetrahydrofolate. The radio-labeled substrate, [14C]N(5),N(10)-methylenetetrahydrofolate, is prepared by condensation of [C(14)]formaldehyde with tetrahydrofolate and the stability of this substrate is maintained for several months by storage at -80 degrees C in a pH 9.5 buffer. Partially purified methylenetetrahydrofolate reductase from rat liver, incubated with the radio-labeled substrate and the cofactors, NADPH and FAD at pH 7. 5, generates [14C]N(5)-methyltetrahydrofolate, which is stable and partitions into the aqueous phase after the assay is terminated with dimedone and toluene. A K(m) value of 8.2 microM was obtained under conditions of increasing substrate concentration to ensure saturation kinetics. This method is simple, very sensitive and measures directly the reduction of N(5), N(10)-methylenetetrahydrofolate to N(5)-methyltetrahydrofolate, which is the physiologic catalytic pathway for methylenetetrahydrofolate reductase.

    Topics: Animals; Carbon Radioisotopes; Catalysis; Chromatography, Thin Layer; Dose-Response Relationship, Drug; Flavin-Adenine Dinucleotide; Humans; Kinetics; Liver; Methylenetetrahydrofolate Reductase (NADPH2); NADP; Oxidation-Reduction; Oxidoreductases Acting on CH-NH Group Donors; Rats; S-Adenosylhomocysteine; S-Adenosylmethionine; Sensitivity and Specificity; Tetrahydrofolates; Tumor Cells, Cultured

2000
Stereospecificity of folate binding to DNA photolyase from Escherichia coli.
    Biochemistry, 1995, Sep-05, Volume: 34, Issue:35

    DNA photolyase from Escherichia coli contains folate ([6S]-5,10-CH(+)-H4Pte(Glu)n = 3-6) and reduced FAD. The folate chromophore acts as an antenna, harvesting light energy which is transferred to the reduced flavin where DNA repair occurs. The folate binding stereospecificity of the enzyme was investigated by reconstituting the apoenzyme with [6R,S]-5,10-CH(+)-H4folate and reduced FAD. The isomer composition of [methyl-3H]-5-CH3-H4folate, released into solution upon reduction of the reconstituted enzyme with [3H]NaBH4, was analyzed by enzymatic and chiral chromatographic methods. Both methods showed that the reconstituted enzyme contained nearly equimolar amounts of [6R]- and [6S]-5,10-CH(+)-H4folate.

    Topics: Apoenzymes; Deoxyribodipyrimidine Photo-Lyase; Escherichia coli; Flavin-Adenine Dinucleotide; Folic Acid; Stereoisomerism; Substrate Specificity; Tetrahydrofolates

1995