flavin-adenine-dinucleotide has been researched along with 5-6-7-8-tetrahydrofolic-acid* in 9 studies
1 review(s) available for flavin-adenine-dinucleotide and 5-6-7-8-tetrahydrofolic-acid
Article | Year |
---|---|
Metabolic Intermediates in Tumorigenesis and Progression.
Traditional antitumor drugs inhibit the proliferation and metastasis of tumour cells by restraining the replication and expression of DNA. These drugs are usually highly cytotoxic. They kill tumour cells while also cause damage to normal cells at the same time, especially the hematopoietic cells that divide vigorously. Patients are exposed to other serious situations such as a severe infection caused by a decrease in the number of white blood cells. Energy metabolism is an essential process for the survival of all cells, but differs greatly between normal cells and tumour cells in metabolic pathways and metabolic intermediates. Whether this difference could be used as new therapeutic target while reducing damage to normal tissues is the topic of this paper. In this paper, we introduce five major metabolic intermediates in detail, including acetyl-CoA, SAM, FAD, NAD Topics: Acetyl Coenzyme A; Antineoplastic Agents; Carcinogenesis; Cell Proliferation; Disease Progression; Flavin-Adenine Dinucleotide; Humans; NAD; Neoplasm Invasiveness; Neoplasms; S-Adenosylmethionine; Tetrahydrofolates | 2019 |
8 other study(ies) available for flavin-adenine-dinucleotide and 5-6-7-8-tetrahydrofolic-acid
Article | Year |
---|---|
Crystal structure and enzymatic characterization of thymidylate synthase X from Helicobacter pylori strain SS1.
Thymidylate synthase X (ThyX) catalyzes the methylation of dUMP to form dTMP in bacterial life cycle and is regarded as a promising target for antibiotics discovery. Helicobacter pylori is a human pathogen associated with a number of human diseases. Here, we cloned and purified the ThyX enzyme from H. pylori SS1 strain (HpThyX). The recombinant HpThyX was discovered to exhibit the maximum activity at pH 8.5, and K(m) values of the two substrates dUMP and CH(2) H(4) folate were determined to be 15.3 ± 1.25 μM and 0.35 ± 0.18 mM, respectively. The analyzed crystal structure of HpThyX with the cofactor FAD and the substrate dUMP (at 2.31 Å) revealed that the enzyme was a tetramer bound to four dUMP and four FAD molecules. Different from the catalytic feature of the classical thymidylate synthase (ThyA), N5 atom of the FAD functioned as a nucleophile in the catalytic reaction instead of Ser84 and Ser85 residues. Our current work is expected to help better understand the structural and enzymatic features of HpThyX thus further providing valuable information for anti-H. pylori inhibitor discovery. Topics: Amino Acid Sequence; Binding Sites; Deoxyuracil Nucleotides; Flavin-Adenine Dinucleotide; Helicobacter pylori; Kinetics; Models, Molecular; Molecular Sequence Data; NADP; Recombinant Proteins; Sequence Alignment; Tetrahydrofolates; Thymidylate Synthase | 2011 |
Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.
Methylenetetrahydrofolate reductase (MTHFR) is one of the enzymes involved in homocysteine metabolism. Despite considerable genetic and clinical attention, the reaction mechanism and regulation of this enzyme are not fully understood because of difficult production and poor stability. While recombinant enzymes from thermophilic organisms are often stable and easy to prepare, properties of thermostable MTHFRs have not yet been reported.. MTHFR from Thermus thermophilus HB8, a homologue of Escherichia coli MetF, has been expressed in E. coli and purified. The purified MTHFR was chiefly obtained as a heterodimer of apo- and holo-subunits, that is, one flavin adenine dinucleotide (FAD) prosthetic group bound per dimer. The crystal structure of the holo-subunit was quite similar to the β(8)α(8) barrel of E. coli MTHFR, while that of the apo-subunit was a previously unobserved closed form. In addition, the intersubunit interface of the dimer in the crystals was different from any of the subunit interfaces of the tetramer of E. coli MTHFR. Free FAD could be incorporated into the apo-subunit of the purified Thermus enzyme after purification, forming a homodimer of holo-subunits. Comparison of the crystal structures of the heterodimer and the homodimer revealed different intersubunit interfaces, indicating a large conformational change upon FAD binding. Most of the biochemical properties of the heterodimer and the homodimer were the same, except that the homodimer showed ≈50% activity per FAD-bound subunit in folate-dependent reactions.. The different intersubunit interfaces and rearrangement of subunits of Thermus MTHFR may be related to human enzyme properties, such as the allosteric regulation by S-adenosylmethionine and the enhanced instability of the Ala222Val mutant upon loss of FAD. Whereas E. coli MTHFR was the only structural model for human MTHFR to date, our findings suggest that Thermus MTHFR will be another useful model for this important enzyme. Topics: Amino Acid Sequence; Bacterial Proteins; Base Sequence; Biocatalysis; Crystallography, X-Ray; Enzyme Stability; Escherichia coli Proteins; Flavin-Adenine Dinucleotide; Humans; Hydrogen-Ion Concentration; Methylenetetrahydrofolate Reductase (NADPH2); Models, Molecular; Molecular Sequence Data; Protein Multimerization; Protein Structure, Quaternary; Protein Subunits; S-Adenosylmethionine; Sequence Homology, Amino Acid; Substrate Specificity; Temperature; Tetrahydrofolates; Thermus thermophilus | 2011 |
Atomic structure of a folate/FAD-dependent tRNA T54 methyltransferase.
tRNAs from all 3 phylogenetic domains have a 5-methyluridine at position 54 (T54) in the T-loop. The methyl group is transferred from S-adenosylmethionine by TrmA methyltransferase in most Gram-negative bacteria and some archaea and eukaryotes, whereas it is transferred from 5,10-methylenetetrahydrofolate (MTHF) by TrmFO, a folate/FAD-dependent methyltransferase, in most Gram-positive bacteria and some Gram-negative bacteria. However, the catalytic mechanism remains unclear, because the crystal structure of TrmFO has not been solved. Here, we report the crystal structures of Thermus thermophilus TrmFO in its free form, tetrahydrofolate (THF)-bound form, and glutathione-bound form at 2.1-, 1.6-, and 1.05-A resolutions, respectively. TrmFO consists of an FAD-binding domain and an insertion domain, which both share structural similarity with those of GidA, an enzyme involved in the 5-carboxymethylaminomethylation of U34 of some tRNAs. However, the overall structures of TrmFO and GidA are basically different because of their distinct domain orientations, which are consistent with their respective functional specificities. In the THF complex, the pteridin ring of THF is sandwiched between the flavin ring of FAD and the imidazole ring of a His residue. This structure provides a snapshot of the folate/FAD-dependent methyl transfer, suggesting that the transferring methylene group of MTHF is located close to the redox-active N5 atom of FAD. Furthermore, we established an in vitro system to measure the methylation activity. Our TrmFO-tRNA docking model, in combination with mutational analyses, suggests a catalytic mechanism, in which the methylene of MTHF is directly transferred onto U54, and then the exocyclic methylene of U54 is reduced by FADH(2). Topics: Bacterial Proteins; Binding Sites; Crystallography, X-Ray; Flavin-Adenine Dinucleotide; Glutathione; Mutagenesis, Site-Directed; Protein Binding; Protein Conformation; Tetrahydrofolates; Thermus thermophilus; tRNA Methyltransferases | 2009 |
Direct observation of the participation of flavin in product formation by thyX-encoded thymidylate synthase.
The synthesis of thymine for DNA is catalyzed by the enzyme thymidylate synthase (TS). A family of flavin-dependent TSs encoded by the thyX gene has been discovered recently. These newly discovered TSs require a reducing substrate in addition to 2'-deoxyuridine monophosphate (dUMP) and 5,10-methylenetetrahydrofolate (CH2THF), suggesting that the enzyme-bound flavin is a redox intermediary in catalysis. The oxidation of the reduced flavin of the TS from Campylobacter jejuni has been observed directly upon mixing with dUMP and CH2THF under anaerobic conditions, thus providing the first direct demonstration of its redox role in catalysis. Product analysis showed that the one mole of 2'-deoxythymidine monophosphate is formed along with one mole of tetrahydrofolate for each mole of reduced enzyme-bound flavin. The classic TS inactivator 5-fluoro-2'-deoxyuridine monophosphate (FdUMP) was able to bind to the reduced enzyme but was unable to oxidize the flavin, even in the presence of CH2THF. Furthermore, the nucleotide binding site of the enzyme treated with FdUMP and CH2THF was irreversibly blocked, suggesting the formation of a stable substrate adduct analogous to that formed by the well-studied thyA-encoded TS. The formation of inactivated enzyme without flavin oxidation indicates that methylene transfer from the folate to the nucleotide occurs prior to flavin redox chemistry. Topics: Campylobacter jejuni; Deoxyuracil Nucleotides; Flavin-Adenine Dinucleotide; Oxidation-Reduction; Spectrophotometry; Tetrahydrofolates; Thymidine Monophosphate; Thymidylate Synthase | 2005 |
An alternative flavin-dependent mechanism for thymidylate synthesis.
Although deoxythymidylate cannot be provided directly by ribonucleotide reductase, the gene encoding thymidylate synthase ThyA is absent from the genomes of a large number of nonsymbiotic microbes. We show that ThyX (Thy1) proteins of previously unknown function form a large and distinct class of thymidylate synthases. ThyX has a wide but sporadic phylogenetic distribution, almost exclusively limited to microbial genomes lacking thyA. ThyX and ThyA use different reductive mechanisms, because ThyX activity is dependent on reduced flavin nucleotides. Our findings reveal complexity in the evolution of thymidine in present-day DNA. Because ThyX proteins are found in many pathogenic microbes, they present a previously uncharacterized target for antimicrobial compounds. Topics: Catalysis; Deoxyuracil Nucleotides; Electron Transport; Escherichia coli; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Gene Transfer, Horizontal; Genes, Archaeal; Genes, Bacterial; Helicobacter pylori; Molecular Weight; Phylogeny; Pyrococcus; Recombinant Proteins; Tetrahydrofolates; Thymidine Monophosphate; Thymidylate Synthase; Transformation, Bacterial; Uridine Monophosphate | 2002 |
Biochemistry. DNA building block reinvented.
Topics: Bacteria; Binding Sites; Crystallography, X-Ray; Deoxyuracil Nucleotides; Drug Design; Enzyme Inhibitors; Evolution, Molecular; Flavin-Adenine Dinucleotide; Helicobacter pylori; Humans; Methyltransferases; Models, Molecular; Phylogeny; Protein Conformation; Protein Structure, Tertiary; Protozoan Proteins; Tetrahydrofolates; Thermotoga maritima; Thymidine Monophosphate; Thymidylate Synthase | 2002 |
Sequence analysis of sarcosine oxidase and nearby genes reveals homologies with key enzymes of folate one-carbon metabolism.
Corynebacterial sarcosine oxidase, a heterotetrameric (alpha beta gamma delta) enzyme containing covalent and noncovalent FAD, catalyzes the oxidative demethylation of sarcosine to yield glycine, H2O2, and 5,10-CH2-tetrahydrofolate (H4folate) in a reaction requiring H4folate and O2. The sarcosine oxidase operon contains at least five closely packed genes encoding sarcosine oxidase subunits and serine hydroxymethyltransferase (glyA), arranged in the order glyAsoxBDAG. The operon status of a putative purU gene, found 340 nucleotides downstream from soxG, is not known. No homology with other proteins is observed for the smallest sarcosine oxidase subunits gamma and delta. The beta subunit (405 residues) contains an ADP-binding motif near its NH2 terminus, the covalent FAD attachment site (H175), and exhibits homology with the NH2-terminal half of dimethylglycine dehydrogenase (857 residues) and monomeric, bacterial sarcosine oxidases (approximately 388 residues), enzymes that contain a single covalent FAD. The alpha subunit (967 residues) contains a second ADP-binding motif within an approximately 280 residue region near the NH2 terminus that exhibits homology with subunit A from octopine and nopaline oxidases, heterodimeric enzymes that catalyze analogous oxidative cleavage reactions with N-substituted arginine derivatives. An approximately 380 residue region near the COOH terminus of alpha exhibits homology with T-protein and the COOH-terminal half of dimethylglycine dehydrogenase. These enzymes catalyze the formation of 5,10-CH2-H4folate, using different one-carbon donors. The results suggest that the alpha subunit and dimethylglycine dehydrogenase contain an NH2-terminal domain that binds noncovalent or covalent FAD, respectively, and a carboxyl-terminal H4folate-binding domain. Topics: Adenosine Diphosphate; Amino Acid Sequence; Base Sequence; Binding Sites; Codon; Corynebacterium; Dimethylglycine Dehydrogenase; Flavin-Adenine Dinucleotide; Folic Acid; Genes, Bacterial; Glycine Hydroxymethyltransferase; Molecular Sequence Data; Operon; Oxidoreductases Acting on CH-NH Group Donors; Oxidoreductases, N-Demethylating; Restriction Mapping; Sarcosine; Sarcosine Oxidase; Sequence Homology, Amino Acid; Tetrahydrofolates; Transcription, Genetic | 1995 |
Flavin requirement and partial separation of enzymes catalysing the reduction of folic acid to tetrahydrofolic acid in liver.
Topics: Dinitrocresols; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Flavins; Folic Acid; Humans; Liver; Oxidoreductases; Riboflavin; Tetrahydrofolates | 1963 |