flavin-adenine-dinucleotide and 3-nitrotyrosine

flavin-adenine-dinucleotide has been researched along with 3-nitrotyrosine* in 2 studies

Other Studies

2 other study(ies) available for flavin-adenine-dinucleotide and 3-nitrotyrosine

ArticleYear
Expression and activity of nitric oxide synthase isoforms in rat brain during the development of experimental allergic encephalomyelitis.
    Brain research. Molecular brain research, 2002, Feb-28, Volume: 99, Issue:1

    The activity and expression of nitric oxide synthase (NOS) isoforms and protein nitrotyrosine (NT) residues were investigated in whole encephalic mass (WEM) homogenates during the development of experimental allergic encephalomyelitis (EAE) in Lewis rats. EAE stages (0-III) were daily defined by clinical evaluation, and in the end of each stage, WEMs were removed for analysis of NOS activity, protein NT residues and mRNA for the different NOS isoforms. In the presence of NADPH, WEMs from EAE-III rats showed lower Ca2+-dependent NOS activity than those from control group. These differences disappeared in the presence of exogenous calmodulin, flavin adenine dinucleotide (FAD), tetrahydrobiopterin (BH4) and NADPH. Of all the cofactors, just the omission of FAD caused comparable decrease of Ca2+-dependent NOS activity from both groups. Ca2+-independent NOS activity from EAE-III animals was insensitive to the omission of any of the cofactors, while in control animals this activity was significantly inhibited by the omission of either FAD or BH4. Increased levels of both iNOS mRNA and protein NT expression were observed in animals with EAE, which also showed lower levels of a thermolabile NOS inhibitor in WEM homogenates and sera than controls. In conclusion, during late EAE stages, constitutive Ca2+-dependent NOS activity decreases concomitantly with iNOS upregulation, which could be responsible for the high protein NT levels. The differential dependence of iNOS activity on cofactors and the absence of an endogenous thermolabile NOS inhibitor in animals with EAE could reflect additional control mechanisms of NOS activity in this model of multiple sclerosis.

    Topics: Animals; Biopterins; Brain; Calcium; Calmodulin; Disease Models, Animal; Disease Progression; Encephalomyelitis, Autoimmune, Experimental; Female; Flavin-Adenine Dinucleotide; Male; NADP; Neurons; Nitric Oxide; Nitric Oxide Synthase; Protein Isoforms; Rats; Rats, Inbred Lew; RNA, Messenger; Subcellular Fractions; Tyrosine

2002
Denitration of peroxynitrite-treated proteins by 'protein nitratases' from rat brain and heart.
    Molecular and cellular biochemistry, 1999, Volume: 201, Issue:1-2

    Putative 'protein nitratases,' which catalyze denitration of peroxynitrite (PN)-treated proteins, were detected in the homogenate/crude extract of rat brains and hearts. Nitratase activity was monitored by the decreased intensity of nitrotyrosine immunoreactive-bands in Western blot and increased nitrate level in dialysate of incubation mixture, which contained homogenate/crude extract, protease inhibitors and a PN-treated substrate, such as treated histone (III-S), BSA or invertase. Enhanced activity of nitratases was noted by preincubating crude extract with Ca2+. In addition, at least two types of nitratases may occur: type I, reductant-dependent, and type II, reductant- independent. Furthermore, upon denitration, the activity of PN-treated invertase increased to the same activity level of the untreated invertase. The overall reaction catalyzed by nitratases for denitration of nitrotyrosine residues in protein could be as follows: Protein-Tyr-NO2 + H2O --> Protein-Tyr-H + H+ + NO3-. The nitration/denitration of protein-tyrosine may be crucial in regulating signal transduction.

    Topics: Animals; beta-Fructofuranosidase; Blotting, Western; Brain; Brain Chemistry; Calcium; Dialysis; Enzymes; Flavin-Adenine Dinucleotide; Glutathione; Glutathione Transferase; Glycoside Hydrolases; Myocardium; NAD; NADP; Nitrates; Proteins; Rats; Serum Albumin, Bovine; Tissue Extracts; Tyrosine

1999