flavin-adenine-dinucleotide has been researched along with 2-hydroxy-6-methylpurine* in 2 studies
2 other study(ies) available for flavin-adenine-dinucleotide and 2-hydroxy-6-methylpurine
Article | Year |
---|---|
Reductive half-reaction of xanthine oxidase: mechanistic role of the species giving rise to the "rapid type 1" molybdenum(V) electron paramagnetic resonance signal.
The reaction of xanthine oxidase with xanthine, 1-methylxanthine, and 2-hydroxy-6-methylpurine has been reinvestigated with the aim of elucidating the mechanistic role of the species giving rise to the "rapid" Mo(V) electron paramagnetic resonance (EPR) signal. It is found that addition of 2.0 mM 1-methylxanthine or 2-hydroxy-6-methylpurine to partially reduced enzyme generates substantial amounts of the Type 1 form of the "rapid" EPR signal, characterized by superhyperfine coupling to one strongly interacting (aav = 13 G) and one weakly interacting (aav = 3 G) proton. The "rapid" signals observed with both substrates are identical to those observed in the course of the anaerobic reaction of enzyme with a stoichiometric excess of substrate. With 2-hydroxy-6-methylpurine at pH 10, a burst phase in the formation of the species giving rise to the "rapid Type 1" signal is observed that is fast relative to the rate of formation of the species giving rise to the "very rapid" EPR signal. At pH 8.5, partial reduction of enzyme prior to reaction with xanthine, 1-methylxanthine, or 2-hydroxy-6-methylpurine reverses the relative amounts of "rapid" and "very rapid" EPR signal observed at the shortest reaction times. The substantial amounts of "rapid Type 1" signal formed by addition of substrates to partially reduced enzyme or by reaction of oxidized enzyme with a stoichiometric excess of substrate contrasts with previous work, which has shown that under single-turnover conditions none of the substrates investigated generates an appreciable amount of "rapid" EPR signal.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Cattle; Electron Spin Resonance Spectroscopy; Female; Flavin-Adenine Dinucleotide; Kinetics; Milk; Molybdenum; Oxidation-Reduction; Purines; Spectrophotometry; Time Factors; Xanthine; Xanthine Oxidase; Xanthines | 1993 |
The reductive half-reaction of xanthine oxidase. Identification of spectral intermediates in the hydroxylation of 2-hydroxy-6-methylpurine.
The reaction of xanthine oxidase with 2-hydroxy-6-methylpurine (also called 2-oxo-6-methylpurine) has been studied under both anaerobic and aerobic conditions. Reaction of enzyme with substoichiometric concentrations of hydroxymethylpurine in aerobic 0.1 M 3-(cyclohexylamino)propanesulfonic acid, 0.1 N KCl, 0.3 mM EDTA, pH 10.0, exhibits two reaction intermediates detectable by UV-visible spectrophotometry. The rate constants for formation of the first intermediate, conversion of the first to the second, and the decay of the second to give oxidized enzyme are 18, 1.2, and 0.13 s-1, respectively. The difference spectra of these two intermediates relative to oxidized enzyme are characterized by absorbance maxima at 470 and 540 nm, respectively, with extinction changes (relative to oxidized enzyme) of approximately 410 M-1 cm-1. The 0.13 s-1 decay of the second intermediate agrees well with kcat of 0.11 s-1 determined under the same conditions. Based on a comparison of the kinetics of the reaction as monitored by UV-visible absorption and electron paramagnetic resonance spectrometry, it is concluded that these spectral intermediates arise from the molybdenum center of the enzyme in the MoIV and MoV valence states, respectively, the latter corresponding to the species exhibiting the "very rapid" MoV EPR signal known to be formed in the course of the reaction. This conclusion is supported by the results of experiments using cytochrome c reduction to follow the formation of superoxide production in the course of the aerobic reaction of xanthine oxidase with substoichiometric hydroxymethylpurine, which demonstrate unequivocally that the species exhibiting the very rapid EPR signal is formed by one-electron oxidation of a MoIV species rather than direct one-electron reduction of MoVI by substrate. No evidence is found for the formation of any of the MoV EPR signals designated "rapid" in the present studies, and it is concluded that this species is not a bona fide catalytic intermediate in the reductive half-reaction of xanthine oxidase. Topics: Aerobiosis; Anaerobiosis; Animals; Cattle; Electron Spin Resonance Spectroscopy; Female; Flavin-Adenine Dinucleotide; Hydroxylation; Kinetics; Milk; Oxidation-Reduction; Purines; Spectrophotometry; Xanthine Oxidase | 1991 |