flavanone has been researched along with 7-hydroxyflavone in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (33.33) | 18.2507 |
2000's | 3 (33.33) | 29.6817 |
2010's | 3 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Chu, SC; Hsieh, YS; Lin, JY | 1 |
Jacobson, KA; Moro, S; Sanders, LH; van Rhee, AM | 1 |
Ash, K; Grohmann, K; Manthey, CL; Manthey, JA; Montanari, A | 1 |
Ernst, B; Lill, MA; Vedani, A; Winiger, F | 1 |
Kirchmair, J; Laggner, C; Langer, T; Nashev, LG; Odermatt, A; Schuster, D; Wolber, G | 1 |
Akamatsu, M; Hosoda, A; Hotta, Y; Ishimoto, Y; Nishizaki, Y; Tamura, H; Yoshikawa, H | 1 |
Autino, JC; Bennardi, DO; Del Valle Ortiz, E; Duchowicz, PR; Gaddi, AL; Romanelli, GP; Ruiz, DM; Virla, EG | 1 |
Kogami, Y; Matsuda, H; Nakamura, S; Sugiyama, T; Ueno, T; Yoshikawa, M | 1 |
Akram, M; Atanasov, AG; Ateba, SB; Bachmann, F; Davis, RA; Engeli, RT; Krenn, L; Leugger, S; Njamen, D; Odermatt, A; Schuster, D; Stuppner, H; Temml, V; Vuorinen, A; Waltenberger, B | 1 |
9 other study(ies) available for flavanone and 7-hydroxyflavone
Article | Year |
---|---|
Inhibitory effects of flavonoids on Moloney murine leukemia virus reverse transcriptase activity.
Topics: DNA Polymerase I; Flavonoids; Leukemia Virus, Murine; Reverse Transcriptase Inhibitors; Structure-Activity Relationship | 1992 |
Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model.
Topics: Binding Sites; Computer Simulation; Flavonoids; Kinetics; Least-Squares Analysis; Models, Molecular; Molecular Conformation; Molecular Structure; Purinergic P1 Receptor Antagonists; Receptor, Adenosine A3; Receptors, Purinergic P1; Regression Analysis; Reproducibility of Results; Static Electricity; Structure-Activity Relationship | 1998 |
Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-alpha expression by human monocytes.
Topics: Citrus; Cyclic AMP; Flavonoids; Humans; In Vitro Techniques; Lipopolysaccharides; Monocytes; Phosphodiesterase Inhibitors; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Necrosis Factor-alpha | 1999 |
Impact of induced fit on ligand binding to the androgen receptor: a multidimensional QSAR study to predict endocrine-disrupting effects of environmental chemicals.
Topics: Benzhydryl Compounds; Binding Sites; Diethylstilbestrol; Endocrine System; Hydrocarbons, Chlorinated; Ligands; Models, Molecular; Molecular Conformation; Phenols; Phytoestrogens; Quantitative Structure-Activity Relationship; Receptors, Androgen; Testosterone; Thermodynamics; Xenobiotics | 2005 |
Discovery of nonsteroidal 17beta-hydroxysteroid dehydrogenase 1 inhibitors by pharmacophore-based screening of virtual compound libraries.
Topics: 17-Hydroxysteroid Dehydrogenases; Catalysis; Cell Line; Drug Evaluation, Preclinical; Enzyme Inhibitors; Flavonoids; Humans; Models, Chemical; Small Molecule Libraries | 2008 |
Effect of flavonoids on androgen and glucocorticoid receptors based on in vitro reporter gene assay.
Topics: Androgen Receptor Antagonists; Androgens; Cell Line, Tumor; Flavonoids; Genes, Reporter; Humans; Receptors, Androgen; Receptors, Glucocorticoid; Structure-Activity Relationship | 2009 |
Sustainable synthesis of flavonoid derivatives, QSAR study and insecticidal activity against the fall armyworm, Spodoptera frugiperda (Lep.: Noctuidae).
Topics: Animals; Catalysis; Flavonoids; Insecticides; Quantitative Structure-Activity Relationship; Spodoptera | 2010 |
Structural requirements of flavonoids for the adipogenesis of 3T3-L1 cells.
Topics: 3T3-L1 Cells; Adipogenesis; Animals; CCAAT-Enhancer-Binding Protein-alpha; CCAAT-Enhancer-Binding Protein-beta; CCAAT-Enhancer-Binding Protein-delta; Deoxyglucose; Fatty Acid-Binding Proteins; Flavonoids; Glucose Transporter Type 4; Mice; PPAR gamma; Structure-Activity Relationship | 2011 |
Potential Antiosteoporotic Natural Product Lead Compounds That Inhibit 17β-Hydroxysteroid Dehydrogenase Type 2.
Topics: 17-Hydroxysteroid Dehydrogenases; Biological Products; Enzyme Inhibitors; Etiocholanolone; Humans; Models, Molecular; Molecular Structure; Structure-Activity Relationship; Testosterone | 2017 |