flavan-3-ol and proanthocyanidin

flavan-3-ol has been researched along with proanthocyanidin* in 16 studies

Other Studies

16 other study(ies) available for flavan-3-ol and proanthocyanidin

ArticleYear
Girdling of table grapes at fruit set can divert the phenylpropanoid pathway towards accumulation of proanthocyanidins and change the volatile composition.
    Plant science : an international journal of experimental plant biology, 2020, Volume: 296

    Girdling is an important horticultural practice that allows increased yields or modulated ripening but not much is known how it affects metabolic processes. Trunk girdling was performed at fruit set using a single-blade knife on two table grape cultivar SUPERIOR SEEDLESS® and SABLE SEEDLESS®. Sampling of berries was carried out 1 or 9 weeks after girdling in 2017 from both cultivars and 7 and 9 weeks after girdling of 'Sable' in 2018. As expected, girdling resulted in consistent increase in berry size but total soluble content of mature 'Superior' berries was not affected and in 'Sable' it was slightly reduced in one of the two seasons examined. One week after girdling, abscisic acid and gibberellin content was higher in fruitlets from girdled vines and genes of the phenylpropanoid pathway were induced in both cultivars. Berry color development of 'Sable' measured both by auto-fluorescence and concentration of anthocyanins was reduced upon girdling. In contrast, flavan-3-ol and flavonol content, and total proanthcyanidins (PA) content increased 1.8-fold while the mean degree polymerization of the PA decreased from 26 to 21 upon girdling. Girdling reduced the levels of fatty acid derived volatiles in berries of 'Superior' and 'Sable'. In 'Sable', the total terpene level and the level of volatiles released after acid hydrolysis, decreased upon girdling. Overall, our study indicates that girdling can divert metabolic pathways in a manner that may have significant effect on the taste and flavor of grapes.

    Topics: Abscisic Acid; Crop Production; Flavonoids; Flavonols; Fruit; Gibberellins; Metabolic Networks and Pathways; Plant Growth Regulators; Proanthocyanidins; Vitis; Volatile Organic Compounds

2020
Intravariety Diversity of Bioactive Compounds in Trinitario Cocoa Beans with Different Degrees of Fermentation.
    Journal of agricultural and food chemistry, 2019, Mar-20, Volume: 67, Issue:11

    There has been increasing interest in the bioactive components of cocoa beans as they are related to the nutritional and sensory quality of cocoa products. Sulawesi 1 (Sul 1) cocoa beans (Trinitario variety) with different degrees of fermentation were collected from Indonesia. Quantification of bioactive compounds in these beans was done to better understand its intravariety diversity in the composition of bioactive components. Epicatechin, proanthocyanidin (PA) dimer, PA trimer, PA tetramer, and cyanidin glycosides were the major phenolics in Sul 1 cocoa beans. There was wide variation in the concentrations of bioactive compounds among the beans. These cocoa beans can be categorized into 4 distinct groups based on the profiles of flavan-3-ol derivatives, phenolic acids, flavonols, and anthocyanins. The fermentation index of cocoa beans could not be directly related to the polyphenol profile. This study provides insights into farm management using Sul 1 as planting material for quality improvement of cocoa-based products with targeted bioactive composition.

    Topics: Cacao; Catechin; Chromatography, High Pressure Liquid; Fermentation; Flavonoids; Food Handling; Indonesia; Mass Spectrometry; Plant Extracts; Proanthocyanidins; Seeds

2019
Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract.
    Food chemistry, 2018, Jun-30, Volume: 252

    This study developed, optimized and validated an ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) method to identify and quantify metabolites and microbial-derived catabolites in urine, plasma and feces of rats following ingestion of 50 mg of a red wine proanthocyanidin-rich extract. The method was validated for specificity, linearity, limit of detection (LD) and quantification (LQ), intra-day and inter-day precision, recovery and matrix effects, which were determined for 34 compounds in the three biological matrices. After method validation, three parent flavan-3-ols, four 5-carbon side chain ring fission metabolites, and 27 phenolic acid and aromatic catabolites were quantified in plasma, urine and feces after red wine proanthocyanidin intake. These results establish the value of the UHPLC-HRMS protocol in obtaining a detailed picture of proanthocyanidin metabolites and their microbial-derived catabolites, along with their phase II metabolites, in biological fluids of rat, and potentially in human clinical studies designed to evaluate the bioavailability of dietary flavan-3-ols.

    Topics: Animals; Biological Availability; Chromatography, High Pressure Liquid; Feces; Flavonoids; Limit of Detection; Male; Mass Spectrometry; Proanthocyanidins; Rats; Wine

2018
Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans.
    Food chemistry, 2018, Jul-30, Volume: 255

    Roasting is an important cocoa processing step, but has been reported to reduce the polyphenol content in the beans. We investigated the impact of whole-bean roasting on the polyphenol content, aroma-related chemistry, and in vitro pancreatic lipase (PL) inhibitory activity of cocoa under a range of roasting conditions. Total phenolics, (-)-epicatechin, and proanthocyanidin (PAC) dimer - pentamer content was reduced by roasting. By contrast, roasting at 150 °C or greater increased the levels of catechin and PAC hexamers and heptamers. These compounds have greater PL inhibitory potency. Consistent with these changes in PAC composition and this previous data, we found that roasting at 170 °C time-dependently increased PL inhibitory activity. Cocoa aroma-related compounds increased with roasting above 100 °C, whereas deleterious sensory-related compounds formed at more severe temperatures. Our results indicate that cocoa roasting can be optimized to increase the content of larger PACs and anti-PL activity, while maintaining a favorable aroma profile.

    Topics: Cacao; Catechin; Chocolate; Flavonoids; Lipase; Organic Chemicals; Pancreas; Phenols; Polyphenols; Proanthocyanidins; Temperature

2018
Proanthocyanidin subunit composition determined by functionally diverged dioxygenases.
    Nature plants, 2018, Volume: 4, Issue:12

    Proanthocyanidins (PAs) are primarily composed of the flavan-3-ol subunits (-)-epicatechin and/or (+)-catechin, but the basis for their different starter and extension unit compositions remains unclear. Genetic and biochemical analyses show that, in the model legume Medicago truncatula, two 2-oxoglutarate-dependent dioxygenases, anthocyanidin synthase (ANS) and its homologue leucoanthocyanidin dioxygenase (LDOX), are involved in parallel pathways to generate, respectively, the (-)-epicatechin extension and starter units of PAs, with (+) catechin being an intermediate in the formation of the (-)-epicatechin starter unit. The presence/absence of the LDOX pathway accounts for natural differences in PA compositions across species, and engineering loss of function of ANS or LDOX provides a means to obtain PAs with different compositions and degrees of polymerization for use in food and feed.

    Topics: Biosynthetic Pathways; Catechin; Dioxygenases; Flavonoids; Loss of Function Mutation; Medicago truncatula; Oxygenases; Plant Proteins; Proanthocyanidins

2018
¹H-¹³C HSQC NMR spectroscopy for estimating procyanidin/prodelphinidin and cis/trans-flavan-3-ol ratios of condensed tannin samples: correlation with thiolysis.
    Journal of agricultural and food chemistry, 2015, Feb-25, Volume: 63, Issue:7

    Studies with a diverse array of 22 purified condensed tannin (CT) samples from nine plant species demonstrated that procyanidin/prodelphinidin (PC/PD) and cis/trans-flavan-3-ol ratios can be appraised by (1)H-(13)C HSQC NMR spectroscopy. The method was developed from samples containing 44-∼100% CT, PC/PD ratios ranging from 0/100 to 99/1, and cis/trans ratios ranging from 58/42 to 95/5 as determined by thiolysis with benzyl mercaptan. Integration of cross-peak contours of H/C-6' signals from PC and of H/C-2',6' signals from PD yielded nuclei-adjusted estimates that were highly correlated with PC/PD ratios obtained by thiolysis (R(2) = 0.99). cis/trans-Flavan-3-ol ratios, obtained by integration of the respective H/C-4 cross-peak contours, were also related to determinations made by thiolysis (R(2) = 0.89). Overall, (1)H-(13)C HSQC NMR spectroscopy appears to be a viable alternative to thiolysis for estimating PC/PD and cis/trans ratios of CT if precautions are taken to avoid integration of cross-peak contours of contaminants.

    Topics: Biflavonoids; Catechin; Flavonoids; Isomerism; Magnetic Resonance Spectroscopy; Plant Extracts; Plants; Proanthocyanidins; Sulfhydryl Compounds

2015
Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations.
    The Journal of nutrition, 2014, Volume: 144, Issue:3

    Dietary flavanols and flavonols, flavonoid subclasses, have been recently associated with a lower risk of type 2 diabetes (T2D) in Europe. Even within the same subclass, flavonoids may differ considerably in bioavailability and bioactivity. We aimed to examine the association between individual flavanol and flavonol intakes and risk of developing T2D across European countries. The European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study was conducted in 8 European countries across 26 study centers with 340,234 participants contributing 3.99 million person-years of follow-up, among whom 12,403 incident T2D cases were ascertained and a center-stratified subcohort of 16,154 individuals was defined. We estimated flavonoid intake at baseline from validated dietary questionnaires using a database developed from Phenol-Explorer and USDA databases. We used country-specific Prentice-weighted Cox regression models and random-effects meta-analysis methods to estimate HRs. Among the flavanol subclass, we observed significant inverse trends between intakes of all individual flavan-3-ol monomers and risk of T2D in multivariable models (all P-trend < 0.05). We also observed significant trends for the intakes of proanthocyanidin dimers (HR for the highest vs. the lowest quintile: 0.81; 95% CI: 0.71, 0.92; P-trend = 0.003) and trimers (HR: 0.91; 95% CI: 0.80, 1.04; P-trend = 0.07) but not for proanthocyanidins with a greater polymerization degree. Among the flavonol subclass, myricetin (HR: 0.77; 95% CI: 0.64, 0.93; P-trend = 0.001) was associated with a lower incidence of T2D. This large and heterogeneous European study showed inverse associations between all individual flavan-3-ol monomers, proanthocyanidins with a low polymerization degree, and the flavonol myricetin and incident T2D. These results suggest that individual flavonoids have different roles in the etiology of T2D.

    Topics: Adult; Diabetes Mellitus, Type 2; Diet; Europe; Female; Flavonoids; Flavonols; Follow-Up Studies; Humans; Incidence; Life Style; Male; Middle Aged; Motor Activity; Multivariate Analysis; Nutritional Status; Proanthocyanidins; Proportional Hazards Models; Prospective Studies; Risk Factors; Socioeconomic Factors; Surveys and Questionnaires; White People

2014
Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.).
    Journal of agricultural and food chemistry, 2013, Nov-27, Volume: 61, Issue:47

    A detailed assessment of the total phenolic and total tannin contents, the monomeric and oligomeric flavan-3-ol composition, the proanthocyanidin profile, and the antioxidant potential of the grape pomace byproducts (considered as a whole, both skins and seeds), derived from four white grape varieties (Vitis vinifera L.), was performed. Significant differences (p < 0.05) of the total phenolic content, total tannin content, and antioxidant capacity of grape pomace byproducts were observed among the different grape varieties studied. For the first time in the literature, the particular flavan-3-ol composition of the four grape varieties investigated was described for the whole fraction of their grape pomace byproducts. The phenolic composition and antioxidant capacity of grape pomaces were compared to those of their corresponding stems. The global characterization of these white grape varieties provided a basis for an integrated exploitation of both winemaking byproducts as potential, inexpensive, and easily available sources of bioactive compounds for the pharmaceutical, cosmetic, and food industries.

    Topics: Antioxidants; Chromatography, High Pressure Liquid; Flavonoids; Food Handling; Polyphenols; Proanthocyanidins; Tannins; Vitis; Wine

2013
Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering.
    Plant physiology, 2013, Volume: 161, Issue:3

    Tea (Camellia sinensis) is rich in specialized metabolites, especially polyphenolic proanthocyanidins (PAs) and their precursors. To better understand the PA pathway in tea, we generated a complementary DNA library from leaf tissue of the blister blight-resistant tea cultivar TRI2043 and functionally characterized key enzymes responsible for the biosynthesis of PA precursors. Structural genes encoding enzymes involved in the general phenylpropanoid/flavonoid pathway and the PA-specific branch pathway were well represented in the library. Recombinant tea leucoanthocyanidin reductase (CsLAR) expressed in Escherichia coli was active with leucocyanidin as substrate to produce the 2R,3S-trans-flavan-ol (+)-catechin in vitro. Two genes encoding anthocyanidin reductase, CsANR1 and CsANR2, were also expressed in E. coli, and the recombinant proteins exhibited similar kinetic properties. Both converted cyanidin to a mixture of (+)-epicatechin and (-)-catechin, although in different proportions, indicating that both enzymes possess epimerase activity. These epimers were unexpected based on the belief that tea PAs are made from (-)-epicatechin and (+)-catechin. Ectopic expression of CsANR2 or CsLAR led to the accumulation of low levels of PA precursors and their conjugates in Medicago truncatula hairy roots and anthocyanin-overproducing tobacco (Nicotiana tabacum), but levels of oligomeric PAs were very low. Surprisingly, the expression of CsLAR in tobacco overproducing anthocyanin led to the accumulation of higher levels of epicatechin and its glucoside than of catechin, again highlighting the potential importance of epimerization in flavan-3-ol biosynthesis. These data provide a resource for understanding tea PA biosynthesis and tools for the bioengineering of flavanols.

    Topics: Biosynthetic Pathways; Chromatography, High Pressure Liquid; Flavonoids; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Gene Library; Genes, Plant; Kinetics; Medicago truncatula; Metabolic Engineering; Nicotiana; Phylogeny; Plant Leaves; Plant Proteins; Plant Roots; Plants, Genetically Modified; Proanthocyanidins; Recombinant Proteins; Sequence Analysis, DNA; Tea

2013
Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis.
    Journal of experimental botany, 2012, Volume: 63, Issue:3

    Grape proanthocyanidins (PAs) play a major role in the organoleptic properties of wine. They are accumulated mainly in grape skin and seeds during the early stages of berry development. Despite the recent progress in the identification of genes involved in PA biosynthesis, the mechanisms involved in subunit condensation, galloylation, or fine regulation of the spatio-temporal composition of grape berries in PAs are still not elucidated. Two Myb transcription factors, VvMybPA1 and VvMybPA2, controlling the PA pathway have recently been identified and ectopically over-expressed in an homologous system. In addition to already known PA genes, three genes coding for glucosyltransferases were significantly differentially expressed between hairy roots over-expressing VvMybPA1 or VvMybPA2 and control lines. The involvement of these genes in PA biosynthesis metabolism is unclear. The three glucosyltransferases display high sequence similarities with other plant glucosyltransferases able to catalyse the formation of glucose esters, which are important intermediate actors for the synthesis of different phenolic compounds. Studies of the in vitro properties of these three enzymes (K(m), V(max), substrate specificity, pH sensitivity) were performed through production of recombinant proteins in E. coli and demonstrated that they are able to catalyse the formation of 1-O-acyl-Glc esters of phenolic acids but are not active on flavonoids and stilbenes. The transcripts are expressed in the early stages of grape berry development, mainly in the berry skins and seeds. The results presented here suggest that these enzymes could be involved in vivo in PA galloylation or in the synthesis of hydroxycinnamic esters.

    Topics: DNA, Complementary; Flavonoids; Gene Expression Regulation, Plant; Glucosyltransferases; Hydroxybenzoates; Plant Proteins; Polymerase Chain Reaction; Proanthocyanidins; Transcription Factors; Vitis

2012
Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.).
    Journal of agricultural and food chemistry, 2012, Dec-05, Volume: 60, Issue:48

    Stem byproducts from 10 different grape (Vitis vinifera L.) varieties were evaluated in terms of their total phenolic and total proanthocyanidin contents, flavan-3-ol and proanthocyanidin profiles, and antioxidant capacity measured by ABTS, CUPRAC, FRAP, and ORAC assays, with a view to the recovery of their natural bioactive compounds. Stems from Callet, Syrah, Premsal Blanc, Parellada, and Manto Negro varieties yielded the highest total phenolic and total proanthocyanidin contents and showed the greatest antioxidant capacities, whereas Chardonnay and Merlot stems presented the lowest values. Varieties differed significantly (p<0.05) with regard to both the phenolic composition and antioxidant capacity of their stems. However, no significant differences (p>0.05) were observed when stems from red and white varieties were considered separately. For the 10 grape varieties investigated, this is the first study presenting a detailed description of their stem flavan-3-ol composition determined by HPLC-UV-fluo. All of the analyses confirmed the stem byproducts as a potential polyphenol-rich source, especially promising in the case of the Callet variety.

    Topics: Antioxidants; Benzothiazoles; Chromatography, High Pressure Liquid; Drug Evaluation, Preclinical; Flavonoids; Food-Processing Industry; Hydroxybenzoates; Plant Stems; Polyphenols; Proanthocyanidins; Sulfonic Acids; Vitis; Wine

2012
Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree.
    Plant physiology, 2011, Volume: 155, Issue:1

    Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree.

    Topics: Aluminum; Anions; Biological Assay; Cell Lineage; Cell Proliferation; Cinnamomum camphora; Citrates; Flavonoids; Glycine max; Plant Epidermis; Plant Roots; Proanthocyanidins

2011
4-arylflavan-3-ols as proanthocyanidin models: absolute configuration via density functional calculation of electronic circular dichroism.
    Journal of natural products, 2010, Mar-26, Volume: 73, Issue:3

    Density functional theory/B3LYP has been employed to optimize the conformations of selected 4-arylflavan-3-ols and their phenolic methyl ether 3-O-acetates. The electronic circular dichroism spectra of the major conformers have been calculated using time-dependent density functional theory to validate the empirical aromatic quadrant rule applied to the assignment of the absolute configuration of this class of compounds. The modest 6-31G* basis set was sufficient to produce reasonable spectra. The calculated Cotton effects at 220-240 nm, crucial for the assignment of the C-4 absolute configuration, result from electronic transitions of the molecular orbitals involving the pi-electrons of the spatially close aromatic A-ring and 4-aryl moieties. The sign of this Cotton effect is determined by the orientation of the 4-aryl substituent: the negative and positive Cotton effects are associated with 4alpha- and 4beta-aryl substituents, respectively.

    Topics: Algorithms; Circular Dichroism; Flavonoids; Models, Molecular; Molecular Structure; Proanthocyanidins; Thermodynamics

2010
The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat.
    The Plant cell, 2007, Volume: 19, Issue:6

    Phenotypic characterization of the Arabidopsis thaliana transparent testa12 (tt12) mutant encoding a membrane protein of the multidrug and toxic efflux transporter family, suggested that TT12 is involved in the vacuolar accumulation of proanthocyanidin precursors in the seed. Metabolite analysis in tt12 seeds reveals an absence of flavan-3-ols and proanthocyanidins together with a reduction of the major flavonol quercetin-3-O-rhamnoside. The TT12 promoter is active in cells synthesizing proanthocyanidins. Using translational fusions between TT12 and green fluorescent protein, it is demonstrated that this transporter localizes to the tonoplast. Yeast vesicles expressing TT12 can transport the anthocyanin cyanidin-3-O-glucoside in the presence of MgATP but not the aglycones cyanidin and epicatechin. Inhibitor studies demonstrate that TT12 acts in vitro as a cyanidin-3-O-glucoside/H(+)-antiporter. TT12 does not transport glycosylated flavonols and procyanidin dimers, and a direct transport activity for catechin-3-O-glucoside, a glucosylated flavan-3-ol, was not detectable. However, catechin-3-O-glucoside inhibited TT12-mediated transport of cyanidin-3-O-glucoside in a dose-dependent manner, while flavan-3-ol aglycones and glycosylated flavonols had no effect on anthocyanin transport. It is proposed that TT12 transports glycosylated flavan-3-ols in vivo. Mutant banyuls (ban) seeds accumulate anthocyanins instead of proanthocyanidins, yet the ban tt12 double mutant exhibits reduced anthocyanin accumulation, which supports the transport data suggesting that TT12 mediates anthocyanin transport in vitro.

    Topics: Anthocyanins; Antiporters; Arabidopsis; Arabidopsis Proteins; Cytoplasmic Vesicles; Flavonoids; Glucosides; Mutation; Proanthocyanidins; Promoter Regions, Genetic; Protein Transport; Seeds; Substrate Specificity; Transcription Factors; Vacuoles; Yeasts

2007
Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants.
    Phytochemistry, 2006, Volume: 67, Issue:11

    (-)-Epicatechin (EC) and (-)-epigallocatechin gallate (EGCG), two major tea flavan-3-ols, have received attention in food science and biomedicine because of their potent antioxidant properties. In plants, flavan-3-ols serve as proanthocyanidin (PA) building blocks, and although both monomeric flavan-3-ols and PAs show antioxidant activity in vitro, their antioxidant function in vivo remains unclear. In the present study, EC quinone (ECQ) and EGCG quinone (EGCGQ), the oxidation products of EC and EGCG, increased up to 100- and 30-fold, respectively, in tea plants exposed to 19 days of water deficit. Oxidation of EC and EGCG preceded PAs accumulation in leaves, which increased from 35 to 53 mg gDW(-1) after 26 days of water deficit. Aside from the role monomeric flavan-3-ols may play in PAs biosynthesis, formation of ECQ and EGCGQ strongly negatively correlated with the extent of lipid peroxidation in leaves, thus supporting a protective role for these compounds in drought-stressed plants. Besides demonstrating flavonoid accumulation in drought-stressed tea plants, we show for the first time that EC and EGCG are oxidized to their respective quinones in plants in vivo.

    Topics: Antioxidants; Camellia sinensis; Dehydration; Flavonoids; Molecular Structure; Oxidation-Reduction; Plant Leaves; Proanthocyanidins

2006
Synthesis of modified proanthocyanidins: easy and general introduction of a hydroxy group at C-6 of catechin; efficient synthesis of elephantorrhizol.
    Bioorganic & medicinal chemistry letters, 2005, Feb-01, Volume: 15, Issue:3

    A general procedure for the oxidation of catechin derivatives is described, leading to the introduction of a new hydroxy group at C-6. This procedure has been applied for the synthesis of elephantorrhizol, a natural flavan-3-ol exhibiting a fully substituted cycle A.

    Topics: Antioxidants; Catechin; Flavonoids; Molecular Structure; Plants, Medicinal; Proanthocyanidins

2005