flavan-3-ol and gamma-valerolactone

flavan-3-ol has been researched along with gamma-valerolactone* in 7 studies

Reviews

1 review(s) available for flavan-3-ol and gamma-valerolactone

ArticleYear
Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity.
    Natural product reports, 2019, 05-22, Volume: 36, Issue:5

    Covering: 1958 to June 2018 Phenyl-γ-valerolactones (PVLs) and their related phenylvaleric acids (PVAs) are the main metabolites of flavan-3-ols, the major class of flavonoids in the human diet. Despite their presumed importance, these gut microbiota-derived compounds have, to date, in terms of biological activity, been considered subordinate to their parent dietary compounds, the flavan-3-ol monomers and proanthocyanidins. In this review, the role and prospects of PVLs and PVAs as key metabolites in the understanding of the health features of flavan-3-ols have been critically assessed. Among the topics covered, are proposals for a standardised nomenclature for PVLs and PVAs. The formation, bioavailability and pharmacokinetics of PVLs and PVAs from different types of flavan-3-ols are discussed, taking into account in vitro and animal studies, as well as inter-individual differences and the existence of putative flavan-3-ol metabotypes. Synthetic strategies used for the preparation of PVLs are considered and the methodologies for their identification and quantification assessed. Metabolomic approaches unravelling the role of PVLs and PVAs as biomarkers of intake are also described. Finally, the biological activity of these microbial catabolites in different experimental models is summarised. Knowledge gaps and future research are considered in this key area of dietary (poly)phenol research.

    Topics: Animals; Biological Availability; Colon; Diet; Feces; Flavonoids; Humans; Lactones; Metabolomics; Molecular Structure; Pentanoic Acids

2019

Trials

1 trial(s) available for flavan-3-ol and gamma-valerolactone

ArticleYear
Performance of Urinary Phenyl-γ-Valerolactones as Biomarkers of Dietary Flavan-3-ol Exposure.
    The Journal of nutrition, 2023, Volume: 153, Issue:8

    Phenyl-γ-valerolactones (PVLs) have been identified as biomarkers of dietary flavan-3-ol exposure, although their utility requires further characterization.. We investigated the performance of a range of PVLs as biomarkers indicative of flavan-3-ol intake.. We report the results of 2 companion studies: a 5-way randomized crossover trial (RCT) and an observational cross-sectional study. In the RCT (World Health Organization, Universal Trial Number: U1111-1236-7988), 16 healthy participants consumed flavan-3-ol-rich interventions (of apple, cocoa, black tea, green tea, or water [control]) for 1 d each. First morning void samples and 24-h urine samples were collected with diet standardized throughout. For each participant, 1 intervention period was extended (to 2 d) to monitor PVL kinetics after repeat exposure. In the cross-sectional study, 86 healthy participants collected 24-h urine samples, and concurrent weighed food diaries from which flavan-3-ol consumption was estimated using Phenol-Explorer. A panel of 10 urinary PVLs was quantified using liquid chromatography tandem mass spectrometry.. In both studies, 2 urinary PVLs [5-(3'-hydroxyphenyl)-γ-valerolactone-4'-sulfate and putatively identified 5-(4'-hydroxyphenyl)-γ-valerolactone-3'-glucuronide] were the principal compounds excreted (>75%). In the RCT, the sum of these PVLs was significantly higher than the water (control) after each intervention; individually, there was a shift from sulfation toward glucuronidation as the total excretion of PVLs increased across the different interventions. In the extended RCT intervention period, no accumulation of these PVLs was observed after consecutive days of treatment, and after withdrawal of treatment on the third day, there was a return toward negligible PVL excretion. All results were consistent, whether compounds were measured in 24-h urine or first morning void samples. In the observational study, the sum of the principal PVLs correlated dose dependently (R. Urinary 5-(3'-hydroxyphenyl)-γ-valerolactone-4'-sulfate and putatively identified 5-(4'-hydroxyphenyl)-γ-valerolactone-3'-glucuronide are recommended biomarkers for dietary flavan-3-ol exposure.

    Topics: Biomarkers; Catechin; Flavonoids; Glucuronides; Humans; Sulfates; Tea

2023

Other Studies

5 other study(ies) available for flavan-3-ol and gamma-valerolactone

ArticleYear
Association of dietary flavan-3-ol intakes with plasma phenyl-γ-valerolactones: analysis from the TUDA cohort of healthy older adults.
    The American journal of clinical nutrition, 2023, Volume: 118, Issue:2

    Dietary polyphenols, including flavan-3-ols (F3O), are associated with better health outcomes. The relationship of plasma phenyl-γ-valerolactones (PVLs), the products of colonic bacterial metabolism of F3O, with dietary intakes is unclear.. To investigate whether plasma PVLs are associated with self-reported intakes of total F3O and procyanidins+(epi)catechins.. We measured 9 PVLs by uHPLC-MS-MS in plasma from adults (>60y) in the Trinity-Ulster-Department of Agriculture (TUDA study (2008 to 2012; n=5186) and a follow-up subset (2014 to 2018) with corresponding dietary data (n=557). Dietary (poly)phenols collected by FFQ were analyzed using Phenol-Explorer.. Mean (95% confidence interval [CI]) intakes were estimated as 2283 (2213, 2352) mg/d for total (poly)phenols, 674 (648, 701) for total F3O, and 152 (146, 158) for procyanidins+(epi)catechins. Two PVL metabolites were detected in plasma from the majority of participants, 5-(hydroxyphenyl)-γ-VL-sulfate (PVL1) and 5-(4'-hydroxyphenyl)-γ-VL-3'-glucuronide (PVL2). The 7 other PVLs were detectable only in 1-32% of samples. Self-reported intakes (mg/d) of F3O (r = 0.113, P = 0.017) and procyanidin+(epi)catechin (r = 0.122, P = 0.010) showed statistically significant correlations with the sum of PVL1 and PVL 2 (PVL1+2). With increasing intake quartiles (Q1-Q4), mean (95% CI) PVL1+2 increased; from 28.3 (20.8, 35.9) nmol/L in Q1 to 45.2 (37.2, 53.2) nmol/L in Q4; P = 0.025, for dietary F3O, and from 27.4 (19.1, 35.8) nmol/L in Q1 to 46.5 (38.2, 54.9) nmol/L in Q4; P = 0.020, for procyanidins+(epi)catechins.. Of 9 PVL metabolites investigated, 2 were detected in most samples and were weakly associated with intakes of total F3O and procyanidins+(epi)catechins. Future controlled feeding studies are required to validate plasma PVLs as biomarkers of these dietary polyphenols.

    Topics: Aged; Catechin; Eating; Flavonoids; Humans; Phenols; Polyphenols; Proanthocyanidins

2023
5-(3',4'-Dihydroxyphenyl)-γ-Valerolactone Is a Substrate for Human Paraoxonase: A Novel Pathway in Flavan-3-ol Metabolism.
    Molecular nutrition & food research, 2023, Volume: 67, Issue:17

    Dietary flavan-3-ols are known to mediate cardiovascular benefits. Currently, it is assumed that the levels of flavan-3-ol catabolites detected in humans, 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (γVL) and 5-(3',4'-dihydroxyphenyl)-γ-valeric acid (γVA), and their corresponding phase II metabolites, are determined exclusively by the action of the gut microbiome. However, a family of human proteins, paraoxonase (PON), can theoretically hydrolyze γVL metabolites into the corresponding γVAs. This study aims to determine if PON is involved in γVL and γVA metabolism in humans.. A rapid conversion of γVL into γVA is detected in serum ex vivo (half-life = 9.8 ± 0.3 min) that is catalyzed by PON1 and PON3 isoforms. Phase II metabolites of γVL are also reacted with PON in serum. Following an intake of flavan-3-ol in healthy males (n = 13), the profile of γVA metabolites detected is consistent with that predicted from the reactivity of γVL metabolites with PON in serum. Furthermore, common PON polymorphisms are evaluated to assess the use of γVL metabolites as biomarkers of flavan-3-ol intake.. PONs are involved in flavan-3-ol metabolic pathway in humans. PON polymorphisms have a minor contribution to inter-individual differences in the levels of γVL metabolites, without affecting their use as a nutritional biomarker.

    Topics: Aryldialkylphosphatase; Flavonoids; Humans; Lactones; Male

2023
A Screening of Native (Poly)phenols and Gut-Related Metabolites on 3D HCT116 Spheroids Reveals Gut Health Benefits of a Flavan-3-ol Metabolite.
    Molecular nutrition & food research, 2022, Volume: 66, Issue:21

    Epidemiological evidence suggests that a reduced risk of colorectal cancer (CRC) is correlated with high consumption of fruits and vegetables, which are major sources of fiber and phytochemicals, such as flavan-3-ols. However, it remains unknown how these phytochemicals and their specific gut-related metabolites may alter cancer cell behavior.. A focused screening using native (poly)phenols and gut microbial metabolites (GMMs) on 3D HCT116 spheroids is carried out using a high-throughput imaging approach. Dose-responses, IC. A chronic exposure to (4R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone may lead to a reduced CRC risk. Daily intake of monomeric, oligomeric, and polymeric flavan-3-ols may increase the colonic concentrations of this metabolite, and, in turn, this compound may act locally interacting with intestinal epithelial cells, precancerous and cancer cells.

    Topics: Flavonoids; Gastrointestinal Microbiome; Phenols; Polyphenols

2022
5-(Hydroxyphenyl)-γ-Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-ols, Is Able to Reach the Brain: Evidence from Different in
    Nutrients, 2019, Nov-05, Volume: 11, Issue:11

    Phenolic compounds have been recognized as promising compounds for the prevention of chronic diseases, including neurodegenerative ones. However, phenolics like flavan-3-ols (F3O) are poorly absorbed along the gastrointestinal tract and structurally rearranged by gut microbiota, yielding smaller and more polar metabolites like phenyl-γ-valerolactones, phenylvaleric acids and their conjugates. The present work investigated the ability of F3O-derived metabolites to cross the blood-brain barrier (BBB), by linking five experimental models with increasing realism. First, an in silico study examined the physical-chemical characteristics of F3O metabolites to predict those most likely to cross the BBB. Some of these metabolites were then tested at physiological concentrations to cross the luminal and abluminal membranes of brain microvascular endothelial cells, cultured in vitro. Finally, three different in vivo studies in rats injected with pure 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, and rats and pigs fed grapes or a F3O-rich cocoa extract, respectively, confirmed the presence of 5-(hydroxyphenyl)-γ-valerolactone-sulfate (3',4' isomer) in the brain. This work highlighted, with different experimental models, the BBB permeability of one of the main F3O-derived metabolites. It may support the neuroprotective effects of phenolic-rich foods in the frame of the "gut-brain axis".

    Topics: Animals; Blood-Brain Barrier; Brain; Cacao; Endothelial Cells; Flavonoids; Humans; Lactones; Models, Theoretical; Pentanoic Acids; Permeability; Plant Extracts; Polyphenols; Rats; Sulfates; Swine; Vitis

2019
Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function.
    Molecular nutrition & food research, 2017, Volume: 61, Issue:9

    Consumption of products rich in flavan-3-ols, such as tea and cocoa, has been associated with decreased obesity, partially dependent on their capacity to enhance energy expenditure. Despite these phenolics having been reported to increase the thermogenic program in brown and white adipose tissue, flavan-3-ols are vastly metabolised in vivo to phenyl-γ-valerolactones. Therefore, we hypothesize that phenyl-γ-valerolactones may directly stimulate the differentiation and the activation of brown adipocytes.. Immortalized brown pre-adipocytes were differentiated in presence of (R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone (VL1), (R)-5-(3´-hydroxyphenyl)-γ-valerolactone-4'-O-sulphate (VL2), (R)-5-phenyl-γ-valerolactone-3´,4´-di-O-sulphate (VL3), at concentrations of 2 or 10μM, whereas fully differentiated brown adipocyte were treated acutely (6-24h). None of the treatments regulated the expression levels of the uncouple protein 1, nor of the main transcription factors involved in brown adipogenesis. Similarly, mitochondrial content was unchanged after treatments. Moreover these compounds did not display peroxisome proliferator-activated receptor γ-agonist activity, as evaluated by luciferase assay, and did not enhance norepinephrine-stimulated lipolysis in mature adipocytes. However, both VL1 and VL2 prevented oxidative stress caused by H. Phenyl-γ-valerolactones and their sulphated forms do not influence brown adipocyte development or function at physiological or supraphysiological doses in vitro, but they are active protecting brown adipocytes from increased reactive oxygen species production.

    Topics: Adipocytes, Brown; Animals; Cell Differentiation; Colon; Cytoprotection; Flavonoids; HEK293 Cells; Humans; Lactones; Mice; Mice, Inbred C57BL; Oxidative Stress; PPAR gamma

2017