fingolimod hydrochloride has been researched along with 3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic acid in 4 studies
Studies (fingolimod hydrochloride) | Trials (fingolimod hydrochloride) | Recent Studies (post-2010) (fingolimod hydrochloride) | Studies (3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic acid) | Trials (3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic acid) | Recent Studies (post-2010) (3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic acid) |
---|---|---|---|---|---|
2,771 | 157 | 2,062 | 27 | 0 | 24 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 4 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bieberich, E; Bryant, L; Chen, C; Chen, Z; Cuzzocrea, S; Doyle, T; Esposito, E; Janes, K; Kamocki, K; Li, C; Little, JW; Neumann, WL; Nicol, G; Obeid, L; Petrache, I; Salvemini, D; Snider, A | 1 |
Guerrero, M; Kays, J; Li, C; Li, JN; Nicol, GD | 1 |
Donahue, RR; Doolen, S; Grachen, CM; Iannitti, T; Shaw, BC; Taylor, BK | 1 |
Fu, J; Gao, F; Gao, Y; Li, Y; Meng, F; Yang, C | 1 |
4 other study(ies) available for fingolimod hydrochloride and 3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic acid
Article | Year |
---|---|
The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1.
Topics: Anilides; Animals; Antineoplastic Agents, Phytogenic; Cytokines; Enzyme Activation; Fingolimod Hydrochloride; Humans; Immunosuppressive Agents; Indans; Lysophospholipids; Male; Neuralgia; Organophosphonates; Oxadiazoles; Paclitaxel; Propylene Glycols; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Thiazoles; Thiophenes | 2014 |
Sphingosine 1-phosphate enhances the excitability of rat sensory neurons through activation of sphingosine 1-phosphate receptors 1 and/or 3.
Topics: Action Potentials; Anilides; Animals; Cells, Cultured; Dinoprostone; Enzyme Inhibitors; Fingolimod Hydrochloride; Ganglia, Spinal; Gene Expression Regulation; Immunosuppressive Agents; Lysophospholipids; Mice; Mice, Inbred C57BL; Organophosphonates; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; RNA, Small Interfering; Sensory Receptor Cells; Sphingosine; Sphingosine-1-Phosphate Receptors; Thiazolidines | 2015 |
Fingolimod reduces neuropathic pain behaviors in a mouse model of multiple sclerosis by a sphingosine-1 phosphate receptor 1-dependent inhibition of central sensitization in the dorsal horn.
Topics: Anilides; Animals; Central Nervous System Sensitization; Disease Models, Animal; eIF-2 Kinase; Female; Fingolimod Hydrochloride; Immunosuppressive Agents; Male; Mice; Mice, Inbred C57BL; Motor Activity; Multiple Sclerosis; Myelin-Oligodendrocyte Glycoprotein; Neuralgia; Organophosphonates; Oxadiazoles; Pain Threshold; Peptide Fragments; Receptors, Lysosphingolipid; Sphingosine-1-Phosphate Receptors; Spinal Cord; Spinal Nerve Roots; Subcellular Fractions; Thiophenes | 2018 |
The Sphingosine 1-Phosphate Analogue FTY720 Alleviates Seizure-induced Overexpression of P-Glycoprotein in Rat Hippocampus.
Topics: Anilides; Animals; Anticonvulsants; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cyclooxygenase 2; Disease Models, Animal; Drug Resistant Epilepsy; Fingolimod Hydrochloride; Hippocampus; Humans; Immunosuppressive Agents; Injections, Intraperitoneal; Lysophospholipids; Male; Organophosphonates; Phenytoin; Pilocarpine; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Sphingosine; Sphingosine-1-Phosphate Receptors; Up-Regulation | 2018 |