fibrin and genipin

fibrin has been researched along with genipin* in 13 studies

Other Studies

13 other study(ies) available for fibrin and genipin

ArticleYear
A multifunctional polydopamine/genipin/alendronate nanoparticle licences fibrin hydrogels osteoinductive and immunomodulatory potencies for repairing bone defects.
    International journal of biological macromolecules, 2023, Sep-30, Volume: 249

    Here, we fabricated a hybrid nanoparticle composed of polydopamine nanoparticles (pNPs), alendronate (Al) and genipin (GP) for cranial bone defect repair. Al was crosslinked into pNPs via GP (Al@pNPs), after which hybrid nanoparticles were obtained. By embedding these Al@pNPs into the fibrin hydrogels, a multifunctional bone repair scaffold was fabricated (Al@pNPs/Fg). The Al@pNPs/Fg exhibited three synergistic effects on the bone microenvironment: i) enhanced ectomesenchymal stem cell (EMSC) osteogenic differentiation by activating the piezo 1 channel; ii) inhibited the formation and function of osteoclasts related to the NF-κB signaling pathways; and iii) promoted M2 polarization and anti-inflammatory factor expression under normal and simulated inflammatory conditions. Al@pNPs/Fg ultimately promoted cranial bone defect regeneration in an SD rat model. This simple and low-cost technology provides a new approach to constructing an efficient delivery system and has desirable biological properties, providing a tissue-committed niche for the repair of bone defects.

    Topics: Alendronate; Animals; Bone Regeneration; Fibrin; Hydrogels; Nanoparticles; Osteogenesis; Rats; Rats, Sprague-Dawley; Tissue Engineering; Tissue Scaffolds

2023
Genipin-crosslinked fibrin seeded with oxidized alginate microbeads as a novel composite biomaterial strategy for intervertebral disc cell therapy.
    Biomaterials, 2022, Volume: 287

    Discectomy procedures alleviate disability caused by intervertebral disc (IVD) herniation, but do not repair herniation-induced annulus fibrosus (AF) defects. Cell therapy shows promise for IVD repair, yet cell delivery biomaterials capable of sealing AF defects and restoring biomechanical function have poor biological performance. To balance the biomechanical and biological demands of IVD cell delivery biomaterials, we engineered an injectable composite biomaterial using cell-laden, degradable oxidized alginate (OxAlg) microbeads (MBs) to deliver AF cells within high-modulus genipin-crosslinked fibrin (FibGen) hydrogels (FibGen + MB composites). Conceptually, the high-modulus FibGen would immediately stabilize injured IVDs, while OxAlg MBs would protect and release cells required for long-term healing. We first showed that AF cells microencapsulated in OxAlg MBs maintained high viability and, upon release, displayed phenotypic AF cell morphology and gene expression. Next, we created cell-laden FibGen + MB composites and demonstrated that OxAlg MBs functionalized with RGD peptides (MB-RGD) minimized AF cell apoptosis and retained phenotypic gene expression. Further, we showed that cell-laden FibGen + MB composites are biomechanically stable and promote extracellular matrix (ECM) synthesis in long-term in vitro culture. Lastly, we evaluated cell-laden FibGen + MB-RGD composites in a long-term bovine caudal IVD organ culture bioreactor and found that composites had low herniation risk, provided superior biomechanical and biological repair to discectomy controls, and retained anabolic cells within the IVD injury space. This novel injectable composite hydrogel strategy shows promise as an IVD cell delivery sealant with potentially broad applications for its capacity to balance biomechanical and biological performance.

    Topics: Animals; Biocompatible Materials; Cattle; Fibrin; Hydrogels; Intervertebral Disc; Intervertebral Disc Degeneration; Microspheres; Oligopeptides

2022
Crosslinker concentration controls TGFβ-3 release and annulus fibrosus cell apoptosis in genipin-crosslinked fibrin hydrogels.
    European cells & materials, 2020, 05-12, Volume: 39

    Back pain is a leading cause of global disability associated with intervertebral disc (IVD) pathologies. Discectomy alleviates disabling pain caused by IVD herniation without repairing annulus fibrosus (AF) defects, which can cause accelerated degeneration and recurrent pain. Biological therapies show promise for IVD repair but developing high-modulus biomaterials capable of providing biomechanical stabilisation and delivering biologics remains an unmet challenge. The present study identified critical factors and developed an optimal formulation to enhance the delivery of AF cells and transforming growth beta-3 (TGFβ-3) in genipin-crosslinked fibrin (FibGen) hydrogels. Part 1 showed that AF cells encapsulated in TGFβ-3-supplemented high-modulus FibGen synthesised little extracellular matrix (ECM) but could release TGFβ-3 at physiologically relevant levels. Part 2 showed that AF cells underwent apoptosis when encapsulated in FibGen, even after reducing fibrin concentration from 70 to 5 mg/mL. Mechanistic experiments, modifying genipin concentration and integrin binding site presence demonstrated that genipin crosslinking caused AF cell apoptosis by inhibiting cell-biomaterial binding. Adding integrin binding sites with fibronectin partially rescued apoptosis, indicating genipin also caused acute cytotoxicity. Part 3 showed that FibGen formulations with 1 mg/mL genipin had enhanced ECM synthesis when supplemented with fibronectin and TGFβ-3. In conclusion, FibGen could be used for delivering biologically active compounds and AF cells, provided that formulations supplied additional sites for cell-biomaterial binding and genipin concentrations were low. Results also highlighted a need for developing strategies that protect cells against acute crosslinker cytotoxicity to overcome challenges of engineering high-modulus cell carriers for musculoskeletal tissues that experience high mechanical demands.

    Topics: Animals; Annulus Fibrosus; Apoptosis; Cattle; Cell-Matrix Junctions; Cross-Linking Reagents; Extracellular Matrix; Fibrin; Fibronectins; Humans; Hydrogels; Iridoids; Kinetics; Transforming Growth Factor beta3

2020
Human decellularized and crosslinked pericardium coated with bioactive molecular assemblies.
    Biomedical materials (Bristol, England), 2019, 12-09, Volume: 15, Issue:1

    Decellularized human pericardium is under study as an allogenic material for cardiovascular applications. The effects of crosslinking on the mechanical properties of decellularized pericardium were determined with a uniaxial tensile test, and the effects of crosslinking on the collagen structure of decellularized pericardium were determined by multiphoton microscopy. The viability of human umbilical vein endothelial cells seeded on decellularized human pericardium and on pericardium strongly and weakly crosslinked with glutaraldehyde and with genipin was evaluated by means of an MTS assay. The viability of the cells, measured by their metabolic activity, decreased considerably when the pericardium was crosslinked with glutaraldehyde. Conversely, the cell viability increased when the pericardium was crosslinked with genipin. Coating both non-modified pericardium and crosslinked pericardium with a fibrin mesh or with a mesh containing attached heparin and/or fibronectin led to a significant increase in cell viability. The highest degree of viability was attained for samples that were weakly crosslinked with genipin and modified by means of a fibrin and fibronectin coating. The results indicate a method by which in vivo endothelialization of human cardiac allografts or xenografts could potentially be encouraged.

    Topics: Allografts; Animals; Biocompatible Materials; Biomechanical Phenomena; Cell Survival; Collagen; Cross-Linking Reagents; Fibrin; Fibronectins; Glutaral; Heterografts; Human Umbilical Vein Endothelial Cells; Humans; Iridoids; Materials Testing; Microscopy, Fluorescence, Multiphoton; Pericardium; Surface Plasmon Resonance; Tensile Strength

2019
Fibrin-Genipin Hydrogel for Cartilage Tissue Engineering in Nasal Reconstruction.
    The Annals of otology, rhinology, and laryngology, 2019, Volume: 128, Issue:7

    Nasal reconstruction is limited by the availability of autologous cartilage. The aim is to investigate an adhesive biomaterial for tissue engineering of nasal cartilage by evaluating mechanical properties of hydrogels made of fibrin crosslinked with genipin as compared to native tissue.. Hydrogels of fibrin, fibrin-genipin, and fibrin-genipin with extracellular matrix (ECM) particles were created and evaluated with mechanical testing to determine compression, tensile, and shear properties. Rabbit nasal septal cartilage was harvested and tested in these modalities for comparison. Transmission electron microscopy characterized hydrogel structure.. Fibrin-genipin gels had higher compressive, tensile, and shear moduli compared to fibrin alone or fibrin-genipin with ECM. However, all hydrogel formulations had lower moduli than the rabbit nasal septal cartilage. Electron microscopy showed genipin crosslinking increased structural density of the hydrogel and that cartilage ECM created larger structural features with lower crosslinking density.. The addition of genipin significantly improved mechanical properties of fibrin hydrogels by increasing the compressive, tensile, and shear moduli. The addition of cartilage ECM, which can add native structure and composition, resulted in decreased moduli values. Fibrin-genipin is a bioactive and biomechanically stable hydrogel that may offer promise as a scaffold for cartilage tissue engineering in nasal reconstruction, yet further augmentation is required to match material properties of native nasal cartilage.

    Topics: Animals; Compressive Strength; Extracellular Matrix; Fibrin; Hydrogel, Polyethylene Glycol Dimethacrylate; Iridoids; Materials Testing; Microscopy, Electron, Transmission; Nasal Cartilages; Nasal Septum; Rabbits; Rhinoplasty; Shear Strength; Tensile Strength; Tissue Engineering; Tissue Scaffolds

2019
Composite biomaterial repair strategy to restore biomechanical function and reduce herniation risk in an ex vivo large animal model of intervertebral disc herniation with varying injury severity.
    PloS one, 2019, Volume: 14, Issue:5

    Back pain commonly arises from intervertebral disc (IVD) damage including annulus fibrosus (AF) defects and nucleus pulposus (NP) loss. Poor IVD healing motivates developing tissue engineering repair strategies. This study evaluated a composite injectable IVD biomaterial repair strategy using carboxymethylcellulose-methylcellulose (CMC-MC) and genipin-crosslinked fibrin (FibGen) that mimic NP and AF properties, respectively. Bovine ex vivo caudal IVDs were evaluated in cyclic compression-tension, torsion, and compression-to-failure tests to determine IVD biomechanical properties, height loss, and herniation risk following experimentally-induced severe herniation injury and discectomy (4 mm biopsy defect with 20% NP removed). FibGen with and without CMC-MC had failure strength similar to discectomy injury suggesting no increased risk compared to surgical procedures, yet no biomaterials improved axial or torsional biomechanical properties suggesting they were incapable of adequately restoring AF tension. FibGen had the largest failure strength and was further evaluated in additional discectomy injury models with varying AF defect types (2 mm biopsy, 4 mm cruciate, 4 mm biopsy) and NP removal volume (0%, 20%). All simulated discectomy defects significantly compromised failure strength and biomechanical properties. The 0% NP removal group had mean values of axial biomechanical properties closer to intact levels than defects with 20% NP removed but they were not statistically different and 0% NP removal also decreased failure strength. FibGen with and without CMC-MC failed at super-physiological stress levels above simulated discectomy suggesting repair with these tissue engineered biomaterials may perform better than discectomy alone, although restored biomechanical function may require additional healing with the potential application of these biomaterials as sealants and cell/drug delivery carriers.

    Topics: Animals; Annulus Fibrosus; Biocompatible Materials; Biomechanical Phenomena; Carboxymethylcellulose Sodium; Cattle; Cross-Linking Reagents; Disease Models, Animal; Diskectomy; Fibrin; Hydrogels; In Vitro Techniques; Injections, Spinal; Intervertebral Disc Displacement; Iridoids; Materials Testing; Methylcellulose; Nucleus Pulposus

2019
Cell-Seeded Adhesive Biomaterial for Repair of Annulus Fibrosus Defects in Intervertebral Discs.
    Tissue engineering. Part A, 2018, Volume: 24, Issue:3-4

    Defects in the annulus fibrosus (AF) of intervertebral discs allow nucleus pulposus tissue to herniate causing painful disability. Microdiscectomy procedures remove herniated tissue fragments, but unrepaired defects remain allowing reherniation or progressive degeneration. Cell therapies show promise to enhance repair, but methods are undeveloped and carriers are required to prevent cell leakage. To address this challenge, this study developed and evaluated genipin-crosslinked fibrin (FibGen) as an adhesive cell carrier optimized for AF repair that can deliver cells, match AF material properties, and have low risk of extrusion during loading. Part 1 determined that feasibility of bovine AF cells encapsulated in high concentration FibGen (F140G6: 140 mg/mL fibrinogen; 6 mg/mL genipin) for 7 weeks could maintain high viability, but had little proliferation or matrix deposition. Part 2 screened tissue mechanics and in situ failure testing of nine FibGen formulations (fibrin: 35-140 mg/mL; genipin: 1-6 mg/mL). F140G6 formulation matched AF shear and compressive properties and significantly improved failure strength in situ. Formulations with reduced genipin also exhibited satisfactory material properties and failure behaviors warranting further biological screening. Part 3 screened AF cells encapsulated in four FibGen formulations for 1 week and found that reduced genipin concentrations increased cell viability and glycosaminoglycan production. F70G1 (70 mg/mL fibrinogen; 1 mg/mL genipin) demonstrated balanced biological and biomechanical performance warranting further testing. We conclude that FibGen has potential to serve as an adhesive cell carrier to repair AF defects with formulations that can be tuned to enhance biomechanical and biological performance; future studies are required to develop strategies to enhance matrix production.

    Topics: Animals; Annulus Fibrosus; Biocompatible Materials; Cattle; Cell Proliferation; Cell Survival; Cells, Cultured; Fibrin; Glycosaminoglycans; Hydrogel, Polyethylene Glycol Dimethacrylate; Intervertebral Disc; Iridoids

2018
Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications.
    Biomedical materials (Bristol, England), 2018, 02-08, Volume: 13, Issue:2

    The generation of biomimetic and biocompatible artificial tissues is the basic research objective for tissue engineering (TE). In this sense, the biofabrication of scaffolds that resemble the tissues' extracellular matrix is an essential aim in this field. Uncompressed and nanostructured fibrin-agarose hydrogels (FAH and NFAH, respectively) have emerged as promising scaffolds in TE, but their structure and biomechanical properties must be improved in order to broaden their TE applications. Here, we generated and characterized novel membrane-like models with increased structural and biomechanical properties based on the chemical cross-linking of FAH and NFAH with genipin (GP at 0.1%, 0.25%, 0.5% and 0.75%). Furthermore, the scaffolds were subjected to rheological (G, G', G″ modulus), ultrastructural and ex vivo biocompatibility analyses. Results showed that all GP concentrations increased the stiffness (G) and especially the elasticity (G') of FAH and NFAH. Ultrastructural analyses demonstrated that GP and nanostructuration of FAH allowed us to control the porosity of FAH. In addition, biological studies revealed that higher concentration of GP (0.75%) started to compromise the cell function and viability. Finally, this study demonstrated the possibility to generate natural and biocompatible FAH and NFAH with improved structural and biomechanical properties by using 0.1%-0.5% of GP. However, further in vivo studies are needed in order to demonstrate the biocompatibility, biodegradability and regeneration capability of these cross-linked scaffolds.

    Topics: Biocompatible Materials; Biomechanical Phenomena; Colorimetry; Elasticity; Extracellular Matrix; Fibrin; Fibroblasts; Humans; Hydrogels; Iridoids; Materials Testing; Microscopy, Electron, Scanning; Porosity; Rheology; Sepharose; Stress, Mechanical; Tissue Engineering; Tissue Scaffolds; Viscosity

2018
Structural and Chemical Modification to Improve Adhesive and Material Properties of Fibrin-Genipin for Repair of Annulus Fibrosus Defects in Intervertebral Disks.
    Journal of biomechanical engineering, 2017, Aug-01, Volume: 139, Issue:8

    Annulus fibrosus (AF) defects from intervertebral disk (IVD) herniation and degeneration are commonly associated with back pain. Genipin-crosslinked fibrin hydrogel (FibGen) is an injectable, space-filling AF sealant that was optimized to match AF shear properties and partially restored IVD biomechanics. This study aimed to enhance mechanical behaviors of FibGen to more closely match AF compressive, tensile, and shear properties by adjusting genipin crosslink density and by creating a composite formulation by adding Poly(D,L-lactide-co-glycolide) (PDLGA). This study also evaluated effects of thrombin concentration and injection technique on gelation kinetics and adhesive strength. Increasing FibGen genipin concentration from 1 to 36 mg/mL significantly increased adhesive strength (∼5 to 35 kPa), shear moduli (∼10 to 110 kPa), and compressive moduli (∼25 to 150 kPa) with concentration-dependent effects, and spanning native AF properties. Adding PDLGA to FibGen altered the material microstructure on electron microscopy and nearly tripled adhesive strength, but did not increase tensile moduli, which remained nearly 5× below native AF, and had a small increase in shear moduli and significantly decreased compressive moduli. Increased thrombin concentration decreased gelation rate to < 5 min and injection methods providing a structural FibGen cap increased pushout strength by ∼40%. We conclude that FibGen is highly modifiable with tunable mechanical properties that can be formulated to be compatible with human AF compressive and shear properties and gelation kinetics and injection techniques compatible with clinical discectomy procedures. However, further innovations, perhaps with more efficient fiber reinforcement, will be required to enable FibGen to match AF tensile properties.

    Topics: Adhesiveness; Annulus Fibrosus; Biocompatible Materials; Fibrin; Iridoids; Materials Testing; Mechanical Phenomena; Polyglactin 910

2017
Mechanically stable fibrin scaffolds promote viability and induce neurite outgrowth in neural aggregates derived from human induced pluripotent stem cells.
    Scientific reports, 2017, 07-24, Volume: 7, Issue:1

    Recent work demonstrated that 3D fibrin scaffolds function as an effective substrate for engineering tissues from pluripotent stem cells. However, the rapid degradation rate of fibrin remains a major limitation when differentiating human pluripotent stem cells for tissue engineering applications. The addition of crosslinking agents, such as genipin, during the polymerization process increases scaffold stability while decreasing the degradation rate of fibrin. Genipin crosslinking alters the physical characteristics of the fibrin scaffolds, which influences the behaviour of the differentiating cells seeded inside. It also possesses neuritogenic and neuroprotective properties, making it particularly attractive for engineering neural tissue from pluripotent stem cells. Here we show that genipin enhances neuronal differentiation of neural progenitors derived from human induced pluripotent stem cells (hiPSCs) in 2D culture and genipin concentration influences the morphological and mechanical properties of 3D fibrin scaffolds. These mechanically stable genipin-crosslinked fibrin scaffolds support hiPSC-derived neural aggregates and induce neurite outgrowth while remaining intact for 2 weeks as opposed to 5 days for unmodified fibrin scaffolds.

    Topics: Cell Culture Techniques; Cell Differentiation; Cross-Linking Reagents; Fibrin; Humans; Induced Pluripotent Stem Cells; Iridoids; Nerve Tissue; Neuronal Outgrowth; Tissue Engineering; Tissue Scaffolds

2017
Fibrin-chitosan composite substrate for in vitro culture of chondrocytes.
    Journal of biomedical materials research. Part A, 2013, Volume: 101, Issue:2

    The aim of this study was to develop a biocompatible monolayer substrate based on fibrin and chitosan for in vitro culture of chondrocytes. Fibrin-chitosan composite substrates combined the proved cell adhesion properties of fibrin with the hydrophilicity and poor adhesion capacity of chitosan. Chitosan microspheres were produced by coacervation method, agglomerated within a fibrin network and subsequently crosslinked with genipin. The composite substrate was stable for 28 days of culture due to the high crosslinking density. Human chondrocytes cultured on the composite substrate were viable during the culture period. At the end of culture time (28 days) the composite substrate showed low cellular proliferation, 41% more collagen type II and 13% more production of sulfated glycosaminoglycans with respect to the amounts found at 14 days. The study revealed that dedifferentiated chondrocytes cultured in monolayer on the composite substrate can re-acquire characteristics of differentiated cells without using three-dimensional substrates or chondrogenic media.

    Topics: Cell Culture Techniques; Cell Shape; Cell Survival; Cells, Cultured; Chitosan; Chondrocytes; Cross-Linking Reagents; DNA; Extracellular Matrix; Fibrin; Humans; Iridoids

2013
Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair.
    European cells & materials, 2011, Apr-18, Volume: 21

    Treatment of damaged intervertebral discs is a significant clinical problem and, despite advances in the repair and replacement of the nucleus pulposus, there are few effective strategies to restore defects in the annulus fibrosus. An annular repair material should meet three specifications: have a modulus similar to the native annulus tissue, support the growth of disc cells, and maintain adhesion to tissue under physiological strain levels. We hypothesized that a genipin crosslinked fibrin gel could meet these requirements. Our mechanical results showed that genipin crosslinked fibrin gels could be created with a modulus in the range of native annular tissue. We also demonstrated that this material is compatible with the in vitro growth of human disc cells, when genipin:fibrin ratios were 0.25:1 or less, although cell proliferation was slower and cell morphology more rounded than for fibrin alone. Finally, lap tests were performed to evaluate adhesion between fibrin gels and pieces of annular tissue. Specimens created without genipin had poor handling properties and readily delaminated, while genipin crosslinked fibrin gels remained adhered to the tissue pieces at strains exceeding physiological levels and failed at 15-30%. This study demonstrated that genipin crosslinked fibrin gels show promise as a gap-filling adhesive biomaterial with tunable material properties, yet the slow cell proliferation suggests this biomaterial may be best suited as a sealant for small annulus fibrosus defects or as an adhesive to augment large annulus repairs. Future studies will evaluate degradation rate, fatigue behaviors, and long-term biocompatibility.

    Topics: Animals; Cattle; Cell Survival; Cells, Cultured; Cholagogues and Choleretics; Dose-Response Relationship, Drug; Fibrin; Humans; Hydrogels; Intervertebral Disc; Iridoid Glycosides; Iridoids; Time Factors; Tissue Adhesives

2011
Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration.
    Cells, tissues, organs, 2009, Volume: 190, Issue:6

    Our objective was to examine the potential of a genipin cross-linked human fibrin hydrogel system as a scaffold for articular cartilage tissue engineering. Human articular chondrocytes were incorporated into modified human fibrin gels and evaluated for mechanical properties, cell viability, gene expression, extracellular matrix production and subcutaneous biodegradation. Genipin, a naturally occurring compound used in the treatment of inflammation, was used as a cross-linker. Genipin cross-linking did not significantly affect cell viability, but significantly increased the dynamic compression and shear moduli of the hydrogel. The ratio of the change in collagen II versus collagen I expression increased more than 8-fold over 5 weeks as detected with real-time RT-PCR. Accumulation of collagen II and aggrecan in hydrogel extracellular matrix was observed after 5 weeks in cell culture. Overall, our results indicate that genipin appeared to inhibit the inflammatory reaction observed 3 weeks after subcutaneous implantation of the fibrin into rats. Therefore, genipin cross-linked fibrin hydrogels can be used as cell-compatible tissue engineering scaffolds for articular cartilage regeneration, for utility in autologous treatments that eliminate the risk of tissue rejection and viral infection.

    Topics: Absorbable Implants; Animals; Cartilage, Articular; Cell Survival; Chondrocytes; Collagen; Compressive Strength; Cross-Linking Reagents; Fibrin; Humans; Hydrogels; Iridoid Glycosides; Iridoids; Rats; Rats, Sprague-Dawley; Regeneration; Shear Strength; Tissue Engineering

2009
chemdatabank.com