fg-9041 and 3-nitrotyrosine

fg-9041 has been researched along with 3-nitrotyrosine* in 2 studies

Other Studies

2 other study(ies) available for fg-9041 and 3-nitrotyrosine

ArticleYear
Energy transfer ligands of the GluR2 ligand binding core.
    Biochemistry, 2010, Mar-09, Volume: 49, Issue:9

    Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory signaling in the central nervous system. When a ligand binds to the extracellular domain of iGluRs, local conformational changes ensue and this motion is translated to the transmembrane domain, inducing channel opening. We have used an isolated ligand binding domain, GluR2-S1S2J (GluR2), as a model system to study the protein-ligand complex by steady-state and time-resolved intrinsic tryptophan fluorescence measurements. Specifically, we determined that the widely used and structurally characterized antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), acts as an efficient fluorescence energy transfer (FET) acceptor for Trp. Consistent with crystallographic data, our results indicate that the four native tryptophans are within Forster's radius (R(o) approximately 33 A) of the bound ligand. Additionally, we demonstrate the broader value of this technique by identifying an original FET ligand, 3-nitrotyrosine (3NY), for GluR2 (R(o) approximately 24 A; apparent dissociation constant K(d) approximately 170 microM). Estimated average donor-acceptor (Trp-ligand) distances extracted from tryptophan excited-state decays are similar for both ligands (approximately 24 A), suggesting that 3NY binds in the structurally characterized ligand binding cleft. Moreover, an alternative competition assay utilizing Trp --> DNQX quenching for detection of ligand binding in GluR2 is described.

    Topics: Animals; Binding, Competitive; Fluorescence Polarization; Fluorescence Resonance Energy Transfer; Ligands; Models, Chemical; Protein Binding; Protein Structure, Tertiary; Quinoxalines; Radioligand Assay; Rats; Receptors, AMPA; Tryptophan; Tyrosine

2010
Involvement of nitric oxide on kainate-induced toxicity in oligodendrocyte precursors.
    Neurotoxicity research, 2003, Volume: 5, Issue:6

    The vulnerability of oligodendrocytes to excitatory amino acids may account for the pathology of white matter occurring following hypoxia/ischemia or autoimmune attack. Here, we examined the vulnerability of immature oligodendrocytes (positively labeled by galactocerobroside-C and not expressing myelin basic protein) from neonatal rat spinal cord to kainate, an agonist of excitatory amino acid receptors that induces long-lasting inward currents in immature oligodendrocytes. In particular, we studied whether kainate toxicity was linked to the endogenous production of nitric oxide. We found cultured oligodendrocytes to be highly sensitive to 24-48 h exposure to 0.5-1 mM kainate. The toxin induced striking morphological changes in oligodendrocytes, characterized by the disruption of the process network around the cell body and the growth of one or two long, thick and non-branched processes. A longer exposure to kainate resulted in massive death of oligodendrocytes, which was prevented by 6,7, dinitroquinoxaline-2,3-dione (DNQX) (30 micro M), the antagonist of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic/kainate receptors. Remarkably, we found that those oligodendrocytes displaying bipolar morphology following kainate exposure, also expressed the inducible form of nitric oxide synthase (iNOS) and nitrotyrosine immunoreactivity, suggesting that peroxynitrite could be formed by the reaction of nitric oxide with superoxide. Moreover, kainate toxicity was significantly prevented by addition of the NOS inhibitor nitro-L-arginine methyl ester (L-NAME), further suggesting that nitric oxide-derived oxidants contribute to excitotoxic mechanisms in immature oligodendrocytes.

    Topics: Animals; Animals, Newborn; Cell Count; Cell Death; Cells, Cultured; Culture Media; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Fluorescent Antibody Technique; Kainic Acid; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Oligodendroglia; Peroxynitrous Acid; Quinoxalines; Rats; Rats, Wistar; Spinal Cord; Stem Cells; Tyrosine

2003