ferrous-bisglycinate has been researched along with ferrous-sulfate* in 9 studies
4 trial(s) available for ferrous-bisglycinate and ferrous-sulfate
Article | Year |
---|---|
The Effect of Oral Iron Supplementation on Gut Microbial Composition: a Secondary Analysis of a Double-Blind, Randomized Controlled Trial among Cambodian Women of Reproductive Age.
The World Health Organization recommends untargeted iron supplementation for women of reproductive age (WRA) in countries where anemia prevalence is greater than 40%, such as Cambodia. Iron supplements, however, often have poor bioavailability, so the majority remains unabsorbed in the colon. The gut houses many iron-dependent bacterial enteropathogens; thus, providing iron to individuals may be more harmful than helpful. We examined the effects of two oral iron supplements with differing bioavailability on the gut microbiomes in Cambodian WRA. This study is a secondary analysis of a double-blind, randomized controlled trial of oral iron supplementation in Cambodian WRA. For 12 weeks, participants received ferrous sulfate, ferrous bisglycinate, or placebo. Participants provided stool samples at baseline and 12 weeks. A subset of stool samples ( Topics: Bacteria; Cambodia; Dietary Supplements; Escherichia coli; Female; Gastrointestinal Microbiome; Humans; Iron; RNA, Ribosomal, 16S | 2023 |
Is a Lower Dose of More Bioavailable Iron (18-mg Ferrous Bisglycinate) Noninferior to 60-mg Ferrous Sulfate in Increasing Ferritin Concentrations While Reducing Gut Inflammation and Enteropathogen Detection in Cambodian Women? A Randomized Controlled Noni
Global guidelines recommend untargeted iron supplementation for women in regions of anemia prevalence ≥40%, such as Cambodia. However, the potential harms of untargeted iron on the gut have not been rigorously studied in women and likely vary depending on iron dose and form.. We investigated if a lower dose of a highly bioavailable iron amino acid chelate was as effective as the standard dose of iron salts in increasing ferritin concentrations and whether any differences were observed in gut inflammation or enteropathogen detection.. A double-blind, randomized placebo-controlled noninferiority trial was conducted in Cambodia. Nonpregnant women (n = 480, 18-45 y) were randomly assigned to 60-mg ferrous sulfate, 18-mg ferrous bisglycinate, or placebo for 12 wk. Nonfasting blood and stool specimens were collected at baseline and 12 wk. Ferritin and fecal calprotectin were measured with an ELISA. A molecular assay was used to detect 11 enteropathogens in a random subset of n = 100 women. Generalized linear mixed-effects models were used to estimate the adjusted mean difference in ferritin concentrations at 12 wk (primary outcome), as compared with our 'a priori' noninferiority margin of 20 μg/L.. Baseline anemia and iron deficiency prevalence was low (17% and 6%, respectively). The adjusted mean difference in ferritin concentrations between the iron groups was 14.6 (95% confidence interval [CI]: 7.6, 21.6) μg/L. Mean ferritin concentration at 12 wk was higher in the ferrous sulfate (99 [95% CI: 95, 103] μg/L, P < 0.001) than in ferrous bisglycinate (84 [95% CI: 80, 88] μg/L) and placebo groups (78 [95% CI: 74, 82] μg/L). No differences in fecal calprotectin concentrations or enteropathogen detection were observed across groups at 12 wk.. Ferrous bisglycinate (18-mg) was not as effective as ferrous sulfate (60-mg) in increasing ferritin concentrations and did not differentially influence biomarkers of gut health in this predominantly iron-replete population of Cambodian women. This trial was registered at clinicaltrials.gov registry as NCT04017598. Topics: Anemia; Anemia, Iron-Deficiency; Cambodia; Dietary Supplements; Female; Ferritins; Ferrous Compounds; Hemoglobins; Humans; Inflammation; Iron | 2023 |
Ferrous bisglycinate 25 mg iron is as effective as ferrous sulfate 50 mg iron in the prophylaxis of iron deficiency and anemia during pregnancy in a randomized trial.
To compare the effects of oral ferrous bisglycinate 25 mg iron/day vs. ferrous sulfate 50 mg iron/day in the prevention of iron deficiency (ID) and iron deficiency anemia (IDA) in pregnant women.. Randomized, double-blind, intention-to-treat study.. Antenatal care clinic.. 80 healthy ethnic Danish pregnant women.. Women were allocated to ferrous bisglycinate 25 mg elemental iron (Aminojern®) (n=40) or ferrous sulfate 50 mg elemental iron (n=40) from 15 to 19 weeks of gestation to delivery. Hematological status (hemoglobin, red blood cell indices) and iron status (plasma iron, plasma transferrin, plasma transferrin saturation, plasma ferritin) were measured at 15-19 weeks (baseline), 27-28 weeks and 36-37 weeks of gestation.. Occurrence of ID (ferritin <15 μg/L) and IDA (ferritin <12 μg/L and hemoglobin <110 g/L).. At inclusion, there were no significant differences between the bisglycinate and sulfate group concerning hematological status and iron status. The frequencies of ID and IDA were low and not significantly different in the two iron groups. The frequency of gastrointestinal complaints was lower in the bisglycinate than in the sulfate group (P=0.001). Newborns weight was slightly higher in the bisglycinate vs. the sulfate group (3601±517 g vs. 3395±426 g, P=0.09).. In the prevention of ID and IDA, ferrous bisglycinate was not inferior to ferrous sulfate. Ferrous bisglycinate in a low dose of 25 mg iron/day appears to be adequate to prevent IDA in more than 95% of Danish women during pregnancy and postpartum. Topics: Anemia, Iron-Deficiency; Double-Blind Method; Female; Ferritins; Ferrous Compounds; Gastrointestinal Diseases; Glycine; Hemoglobins; Humans; Infant, Newborn; Iron; Male; Obstetric Labor Complications; Patient Compliance; Placenta; Pregnancy; Pregnancy Complications, Hematologic; Reticulocyte Count | 2014 |
Treatment of mild non-chemotherapy-induced iron deficiency anemia in cancer patients: comparison between oral ferrous bisglycinate chelate and ferrous sulfate.
In cancer patients mild-moderate non-chemotherapy-induced iron deficiency anemia (IDA) is usually treated with oral iron salts, mostly ferrous sulfate. In this study, we compare efficacy and toxicity of oral ferrous bisglycinate chelate and ferrous sulfate in cancer patients with mild IDA. Twenty-four patients operated on for solid tumors (10 breast, 12 colorectal, 2 gastric), aged 61±10 years (range 45-75), with non-chemotherapy-induced hemoglobin (Hb) values between 10 and 12 g/dL and ferritin lower than 30 ng/mL were randomized to receive oral ferrous bisglycinate chelate, 28 mg per day for 20 days, and then 14 mg per day for 40 days (12 patients) (A group) or oral ferrous sulphate, 105 mg per day for 60 days (12 patients) (B group). Values of hemoglobin and ferritin obtained at diagnosis, 1 and 2 months from the beginning of treatment were compared. Adverse events (AEs) related to the two treatments were recorded. In the 12 patients treated with ferrous bisglycinate chelate, basal hemoglobin and ferritin values (mean±SD) were 11.6±0.8 g/dL and 16.1±8.0 ng/mL. After 2 months of treatment, they were 13.0±1.4 g/dL and 33.8±22.0 ng/mL, respectively (P=0.0003 and P=0.020). In the group treated with ferrous sulphate, hemoglobin and ferritin mean values were 11.3±0.6 g/dL and 19.0±6.4 ng/mL basally, and 12.7±0.70 g/dL and 40.8±28.1 ng/mL (P<0.0001 and P=0.017) after 2 months of treatment. AEs occurred in six cases. In all these six cases, two (17%) treated with ferrous bisglycinate chelate and four (33%) with ferrous sulphate, toxicity was grade 1. In conclusion, these data suggest that ferrous bisglycinate chelate has similar efficacy and likely lower GI toxicity than ferrous sulphate given at the conventional dose of 105 mg per day for the same time. Topics: Aged; Anemia, Iron-Deficiency; Breast Neoplasms; Colorectal Neoplasms; Dietary Supplements; Female; Ferritins; Ferrous Compounds; Follow-Up Studies; Glycine; Hematinics; Hemoglobins; Humans; Iron Chelating Agents; Male; Middle Aged; Stomach Neoplasms | 2012 |
5 other study(ies) available for ferrous-bisglycinate and ferrous-sulfate
Article | Year |
---|---|
Analysis of the iron states in iron-containing pharmaceutical products using Mössbauer spectroscopy.
Topics: Ferric Compounds; Iron; Iron Compounds; Pharmaceutical Preparations; Spectroscopy, Mossbauer | 2024 |
Postnatal Iron Supplementation with Ferrous Sulfate vs. Ferrous Bis-Glycinate Chelate: Effects on Iron Metabolism, Growth, and Central Nervous System Development in Sprague Dawley Rat Pups.
Iron-fortified formulas and iron drops (both usually ferrous sulfate, FS) prevent early life iron deficiency, but may delay growth and adversely affect neurodevelopment by providing excess iron. We used a rat pup model to investigate iron status, growth, and development outcomes following daily iron supplementation (10 mg iron/kg body weight, representative of iron-fortified formula levels) with FS or an alternative, bioavailable form of iron, ferrous bis-glycinate chelate (FC). On postnatal day (PD) 2, sex-matched rat litters ( Topics: Animals; Animals, Newborn; Central Nervous System; Dietary Supplements; Ferrous Compounds; Gene Expression Regulation; Glycine; Hippocampus; Homeostasis; Iron; Iron Chelating Agents; Myelin Sheath; Oxidative Stress; Rats, Sprague-Dawley; Trace Elements; Weight Gain | 2021 |
Iron Transport from Ferrous Bisglycinate and Ferrous Sulfate in DMT1-Knockout Human Intestinal Caco-2 Cells.
This experiment was conducted to investigate the transport characteristics of iron from ferrous bisglycinate (Fe-Gly) in intestinal cells. The divalent metal transporter 1 (DMT1)-knockout Caco-2 cell line was developed by Crispr-Cas9, and then the cells were treated with ferrous sulfate (FeSO₄) or Fe-Gly to observe the labile iron pool and determine their iron transport. The results showed that the intracellular labile iron increased significantly with Fe-Gly or FeSO₄ treatment, and this phenomenon was evident over a wide range of time and iron concentrations in the wild-type cells, whereas in the knockout cells it increased only after processing with high concentrations of iron for a long time ( Topics: Biological Transport; Caco-2 Cells; Cell Survival; Ferrous Compounds; Gene Deletion; Glycine; Humans; Iron; Transcription Factors | 2019 |
[Iron and zinc in vitro potential availability in an infant diet with fortified bread with different iron sources or with the addition of different iron absorption promoters].
Home-made diets are the most frequently used complementary foods. In the present work we evaluated iron and zinc availability in a usually consumed infant diet containing either iron-fortified bread with different iron sources: ferrous sulfate, ferrous bisglycinate, NaFeEDTA. We also used non-fortified bread with absorption promoters: ascorbic acid, sodium citrate, Na2EDTA, combined with different beverages. The diet (potato, pumpkin, grits, bread, and apple) was combined with water, milk, tea, a soft drink and an orange-based artificial drink. Mineral dialyzability (D) as an indicator of potential availability was determined using an in vitro method. Statistical analysis was performed by ANOVA, and a posteriori Tukey test. There were no significant differences in FeD between diets with ferrous sulfate or ferrous bisglycinate fortified bread; in NaFeEDTA fortified bread it increased significantly (p<0.05). Iron D increase was greater in diets with bread containing absorption promoters than in those with fortified bread. The orange-based artificial drink increased FeD, while tea and milk decreased it significantly (p < 0.05). Zinc D increased significantly when the bread was fortified either with ferrous sulfate or NaFeEDTA, but remained unchanged in diets with ferrous bisglycinate fortified bread. The addition of tea or milk decreased ZnD while the orange-based artificial drink increased it significantly (p < 0.05). Regarding absorption promoters, the greater values both in FeD and ZnD were observed in diets with iron nonfortified bread containing Na2EDTA. Topics: Ascorbic Acid; Beverages; Bread; Citrates; Dialysis; Edetic Acid; Ferric Compounds; Ferrous Compounds; Food, Fortified; Glycine; Humans; Infant; Iron; Sodium Citrate; Zinc | 2011 |
Determination of the iron state in ferrous iron containing vitamins and dietary supplements: application of Mössbauer spectroscopy.
Determination of the iron state in commercially manufactured iron containing vitamins and dietary supplements is important for evaluation of pharmaceuticals quality. Mössbauer (nuclear gamma-resonance) spectroscopy was used for analyzing the iron state in commercial pharmaceutical products containing ferrous fumarate (FeC(4)H(2)O(4)), ferrous sulfate (FeSO(4)), ferrous bisglycinate chelate (Ferrochel) and ferrous iron (hydrolyzed protein chelate). Mössbauer parameters and the iron states were determined for iron compounds in the studied pharmaceuticals. Various ferric and ferrous impurities were found in all of the commercial products. The quantities of ferric impurities exceeded the FDA limitation of 2% in products containing ferrous fumarate. The quantities of ferric impurities exceeded 58% and 30% in products containing ferrous bisglycinate chelate and ferrous iron (hydrolyzed protein chelate), respectively. The presence of ferrous and ferric impurities was not related to the ageing of the vitamins and dietary supplements. Two pharmaceutical products contained major iron compounds, the Mössbauer parameters of which did not correspond to the ferrous fumarate or ferrous bisglycinate chelate claimed by the manufacturer. Topics: Dietary Supplements; Drug Contamination; Ferrous Compounds; Glycine; Iron; Spectroscopy, Mossbauer; Vitamins | 2006 |