ferrostatin-1 has been researched along with erastin* in 15 studies
1 review(s) available for ferrostatin-1 and erastin
Article | Year |
---|---|
Ferroptosis in Liver Diseases: An Overview.
Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and redox imbalance. Ferroptosis shows specific biological and morphological features when compared to the other cell death patterns. The loss of lipid peroxide repair activity by glutathione peroxidase 4 (GPX4), the presence of redox-active iron and the oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are considered as distinct fingerprints of ferroptosis. Several pathways, including amino acid and iron metabolism, ferritinophagy, cell adhesion, p53, Keap1/Nrf2 and phospholipid biosynthesis, can modify susceptibility to ferroptosis. Through the decades, various diseases, including acute kidney injury; cancer; ischemia-reperfusion injury; and cardiovascular, neurodegenerative and hepatic disorders, have been associated with ferroptosis. In this review, we provide a comprehensive analysis of the main biological and biochemical mechanisms of ferroptosis and an overview of chemicals used as inducers and inhibitors. Then, we report the contribution of ferroptosis to the spectrum of liver diseases, acute or chronic. Finally, we discuss the use of ferroptosis as a therapeutic approach against hepatocellular carcinoma, the most common form of primary liver cancer. Topics: alpha-Tocopherol; Animals; Autophagy; Chemical and Drug Induced Liver Injury; Cyclohexylamines; Cysteine; Ferroptosis; Glutathione; Heme; Humans; Iron; Kelch-Like ECH-Associated Protein 1; Lipid Peroxidation; Lipoxygenase; Liver Diseases; Liver Neoplasms; Oxidative Stress; Phenylenediamines; Phospholipid Hydroperoxide Glutathione Peroxidase; Piperazines; Quinoxalines; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction; Sorafenib; Spiro Compounds; Sulfasalazine; Tumor Suppressor Protein p53 | 2020 |
14 other study(ies) available for ferrostatin-1 and erastin
Article | Year |
---|---|
Ferroptosis Promotes Cyst Growth in Autosomal Dominant Polycystic Kidney Disease Mouse Models.
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disease, is regulated by different forms of cell death, including apoptosis and autophagy. However, the role in ADPKD of ferroptosis, a recently discovered form of cell death mediated by iron and lipid metabolism, remains elusive.. To determine a pathophysiologic role of ferroptosis in ADPKD, we investigated whether the absence of. We found that kidney cells and tissues lacking. These findings indicate that ferroptosis contributes to ADPKD progression and management of ferroptosis may be a novel strategy for ADPKD treatment. Topics: Animals; Cell Cycle; Cells, Cultured; Cyclohexylamines; Disease Models, Animal; Disease Progression; Epithelial Cells; Female; Ferroptosis; Gene Expression Regulation; Humans; Iron; Lipid Peroxidation; Male; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Knockout; Phenylenediamines; Piperazines; Polycystic Kidney, Autosomal Dominant; RNA Interference; Spheroids, Cellular; Transcriptome; TRPP Cation Channels | 2021 |
Bone Formation Ability and Cell Viability Enhancement of MC3T3-E1 Cells by Ferrostatin-1 a Ferroptosis Inhibitor of Cancer Cells.
Recently, ferroptosis has gained scientists' attention as an iron-related regulated necrosis. However, not many reports have investigated the effect of ferroptosis on bone. Therefore, with the present study, we assessed the effect of ferroptosis inhibition using ferrostatin-1 on the MC3T3-E1 pre-osteoblast cell. Cell images, cell viability, alkaline phosphatase activity test, alizarin red staining, and RUNX2 gene expression using real-time PCR were applied to investigate the effects of ferrostatin and erastin on MC3T3-E1 osteoblast cells. Erastin was used as a well-known ferroptosis inducer reagent. Erastin with different concentrations ranging from 0 to 50 µmol/L was used for inducing cell death. The 25 µmol/L erastin led to controllable partial cell death on osteoblast cells. Ferrostatin-1 with 0 to 40 µmol/L was used for cell doping and cell death inhibition effect. Ferrostatin-1 also displayed a recovery effect on the samples, which had already received the partially artificial cell death by erastin. Cell differentiation, alizarin red staining, and RUNX2 gene expression confirmed the promotion of the bone formation ability effect of ferrostatin-1 on osteoblast cells. The objective of this study was to assess ferrostatin-1's effect on the MC3T3-E1 osteoblast cell line based on its ferroptosis inhibitory property. Topics: Alkaline Phosphatase; Animals; Cell Line; Cell Proliferation; Cell Survival; Core Binding Factor Alpha 1 Subunit; Cyclohexylamines; Ferroptosis; Gene Expression; Mice; Osteoblasts; Osteogenesis; Phenylenediamines; Piperazines; Reverse Transcriptase Polymerase Chain Reaction | 2021 |
Lipid Peroxidation, GSH Depletion, and
Epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1) is thought to be involved in the pathogenesis of pulmonary fibrosis. Emerging evidence suggested that there are some common causes between ferroptosis and pulmonary fibrosis. The interaction of EMT and ferroptosis and its mechanism were investigated by detecting the expression levels of α-smooth muscle actin ( Topics: A549 Cells; Actins; Amino Acid Transport System y+; Cadherins; Cyclohexylamines; Epithelial-Mesenchymal Transition; Ferroptosis; Gene Expression Regulation; Glutathione; Humans; Lipid Peroxidation; Malondialdehyde; Phenylenediamines; Piperazines; Reactive Oxygen Species; RNA, Messenger | 2021 |
Comparison of Ferroptosis-Inhibitory Mechanisms between Ferrostatin-1 and Dietary Stilbenes (Piceatannol and Astringin).
Synthetic arylamines and dietary phytophenolics could inhibit ferroptosis, a recently discovered regulated cell death process. However, no study indicates whether their inhibitory mechanisms are inherently different. Herein, the ferroptosis-inhibitory mechanisms of selected ferrostatin-1 (Fer-1) and two dietary stilbenes (piceatannol and astringin) were compared. Cellular assays suggested that the ferroptosis-inhibitory and electron-transfer potential levels decreased as follows: Fer-1 >> piceatannol > astringin; however, the hydrogen-donating potential had an order different from that observed by the antioxidant experiments and quantum chemistry calculations. Quantum calculations suggested that Fer-1 has a much lower ionization potential than the two stilbenes, and the aromatic N-atoms were surrounded by the largest electron clouds. By comparison, the C4'O-H groups in the two stilbenes exhibited the lowest bond disassociation enthalpies. Finally, the three were found to produce corresponding dimer peaks through ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis. In conclusion, Fer-1 mainly depends on the electron transfer of aromatic N-atoms to construct a redox recycle. However, piceatannol and astringin preferentially donate hydrogen atoms at the 4'-OH position to mediate the conventional antioxidant mechanism that inhibits ferroptosis, and to ultimately form dimers. These results suggest that dietary phytophenols may be safer ferroptosis inhibitors for balancing normal and ferroptotic cells than arylamines with high electron-transfer potential. Topics: Animals; Antioxidants; Cyclic N-Oxides; Cyclohexylamines; Diet; Ferroptosis; Glucosides; Imidazoles; Inhibitory Concentration 50; Male; Mesenchymal Stem Cells; Models, Molecular; Phenylenediamines; Piperazines; Rats, Sprague-Dawley; Static Electricity; Stilbenes | 2021 |
VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis.
Our preliminary work has revealed that vitamin D receptor (VDR) activation is protective against cisplatin induced acute kidney injury (AKI). Ferroptosis was recently reported to be involved in AKI. Here in this study, we investigated the internal relation between ferroptosis and the protective effect of VDR in cisplatin induced AKI. By using ferroptosis inhibitor ferrostatin-1 and measurement of ferroptotic cell death phenotype in both in vivo and in vitro cisplatin induced AKI model, we observed the decreased blood urea nitrogen, creatinine, and tissue injury by ferrostatin-1, hence validated the essential involvement of ferroptosis in cisplatin induced AKI. VDR agonist paricalcitol could both functionally and histologically attenuate cisplatin induced AKI by decreasing lipid peroxidation (featured phenotype of ferroptosis), biomarker 4-hydroxynonenal (4HNE), and malondialdehyde (MDA), while reversing glutathione peroxidase 4 (GPX4, key regulator of ferroptosis) downregulation. VDR knockout mouse exhibited much more ferroptotic cell death and worsen kidney injury than wild type mice. And VDR deficiency remarkably decreased the expression of GPX4 under cisplatin stress in both in vivo and in vitro, further luciferase reporter gene assay showed that GPX4 were target gene of transcription factor VDR. In addition, in vitro study showed that GPX4 inhibition by siRNA largely abolished the protective effect of paricalcitol against cisplatin induced tubular cell injury. Besides, pretreatment of paricalcitol could also alleviated Erastin (an inducer of ferroptosis) induced cell death in HK-2 cell. These data suggested that ferroptosis plays an important role in cisplatin induced AKI. VDR activation can protect against cisplatin induced renal injury by inhibiting ferroptosis partly via trans-regulation of GPX4. Topics: Acute Kidney Injury; Aldehydes; Animals; Antineoplastic Agents; Cell Death; Cell Line; Cisplatin; Creatinine; Cyclohexylamines; Ergocalciferols; Ferroptosis; Glutathione Peroxidase; Humans; Lipid Peroxidation; Male; Malondialdehyde; Mice; Mice, Inbred C57BL; Mice, Knockout; Microscopy, Electron, Scanning Transmission; Mitochondria; Phenylenediamines; Piperazines; Receptors, Calcitriol; RNA, Small Interfering | 2020 |
Energy-stress-mediated AMPK activation inhibits ferroptosis.
Energy stress depletes ATP and induces cell death. Here we identify an unexpected inhibitory role of energy stress on ferroptosis, a form of regulated cell death induced by iron-dependent lipid peroxidation. We found that ferroptotic cell death and lipid peroxidation can be inhibited by treatments that induce or mimic energy stress. Inactivation of AMP-activated protein kinase (AMPK), a sensor of cellular energy status, largely abolishes the protective effects of energy stress on ferroptosis in vitro and on ferroptosis-associated renal ischaemia-reperfusion injury in vivo. Cancer cells with high basal AMPK activation are resistant to ferroptosis and AMPK inactivation sensitizes these cells to ferroptosis. Functional and lipidomic analyses further link AMPK regulation of ferroptosis to AMPK-mediated phosphorylation of acetyl-CoA carboxylase and polyunsaturated fatty acid biosynthesis. Our study demonstrates that energy stress inhibits ferroptosis partly through AMPK and reveals an unexpected coupling between ferroptosis and AMPK-mediated energy-stress signalling. Topics: A549 Cells; Acetyl-CoA Carboxylase; AMP-Activated Protein Kinases; Animals; Cell Line, Tumor; Cyclohexylamines; Embryo, Mammalian; Energy Metabolism; Fatty Acids, Unsaturated; Ferroptosis; Fibroblasts; Gene Expression Regulation; Glucose; Humans; Iron; Kidney; Lipid Peroxidation; MCF-7 Cells; Mice; Mice, Transgenic; Phenylenediamines; Phosphorylation; Piperazines; Primary Cell Culture; Pyrazoles; Pyrimidines; Reperfusion Injury; Signal Transduction; Stress, Physiological | 2020 |
Targeting ferroptosis in rhabdomyosarcoma cells.
Topics: alpha-Tocopherol; Apoptosis; Cell Death; Cell Line, Tumor; Cyclohexylamines; Ferroptosis; Glutathione; Humans; Lipid Peroxidation; Oxidation-Reduction; Oxidative Stress; Phenylenediamines; Piperazines; Pyrazoles; Pyrazolones; Pyridines; Pyridones; Reactive Oxygen Species; Rhabdomyosarcoma | 2020 |
Differential cell death decisions in the testis: evidence for an exclusive window of ferroptosis in round spermatids.
Oxidative stress is a major aetiology in many pathologies, including that of male infertility. Recent evidence in somatic cells has linked oxidative stress to the induction of a novel cell death modality termed ferroptosis. However, the induction of this iron-regulated, caspase-independent cell death pathway has never been explored outside of the soma. Ferroptosis is initiated through the inactivation of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and is exacerbated by the activity of arachidonate 15-lipoxygenase (ALOX15), a lipoxygenase enzyme that facilitates lipid degradation. Here, we demonstrate that male germ cells of the mouse exhibit hallmarks of ferroptosis including; a caspase-independent decline in viability following exposure to oxidative stress conditions induced by the electrophile 4-hydroxynonenal or the ferroptosis activators (erastin and RSL3), as well as a reciprocal upregulation of ALOX15 and down regulation of GPX4 protein expression. Moreover, the round spermatid developmental stage may be sensitized to ferroptosis via the action of acyl-CoA synthetase long-chain family member 4 (ACSL4), which modifies membrane lipid composition in a manner favourable to lipid peroxidation. This work provides a clear impetus to explore the contribution of ferroptosis to the demise of germline cells during periods of acute stress in in vivo models. Topics: Aldehydes; Animals; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Carbolines; Cell Membrane; Cell Survival; Coenzyme A Ligases; Cyclohexylamines; Deferoxamine; Ferroptosis; Gene Expression Regulation, Developmental; Humans; Infertility; Lipid Peroxidation; Male; Mice; Oxidants; Oxidative Stress; Phenylenediamines; Phospholipid Hydroperoxide Glutathione Peroxidase; Piperazines; Primary Cell Culture; Spermatids; Testis | 2019 |
Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells.
Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death, which contributes to damage in models of acute kidney injury (AKI). Heme oxygenase-1 (HO-1) is a cytoprotective enzyme induced in response to cellular stress, and is protective against AKI because of its antiapoptotic and anti-inflammatory properties. However, the role of HO-1 in regulating ferroptosis is unclear. The purpose of this study was to elucidate the role of HO-1 in regulating ferroptotic cell death in renal proximal tubule cells (PTCs). Immortalized PTCs obtained from HO-1 Topics: Acetylcysteine; Acute Kidney Injury; Animals; Antioxidants; Carbolines; Cell Death; Cell Line; Cyclohexylamines; Deferoxamine; Dose-Response Relationship, Drug; Ferric Compounds; Glutathione; Heme Oxygenase-1; Iron Chelating Agents; Kidney Tubules, Proximal; Membrane Proteins; Mice, Knockout; Phenylenediamines; Piperazines; Quaternary Ammonium Compounds; Signal Transduction; Time Factors | 2018 |
Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes.
Clinical studies have suggested that myocardial iron is a risk factor for left ventricular remodeling in patients after myocardial infarction. Ferroptosis has recently been reported as a mechanism of iron-dependent nonapoptotic cell death. However, ferroptosis in the heart is not well understood. Mechanistic target of rapamycin (mTOR) protects the heart against pathological stimuli such as ischemia. To define the role of cardiac mTOR on cell survival in iron-mediated cell death, we examined cardiomyocyte (CM) cell viability under excess iron and ferroptosis conditions. Adult mouse CMs were isolated from cardiac-specific mTOR transgenic mice, cardiac-specific mTOR knockout mice, or control mice. CMs were treated with ferric iron [Fe(III)]-citrate, erastin, a class 1 ferroptosis inducer, or Ras-selective lethal 3 (RSL3), a class 2 ferroptosis inducer. Live/dead cell viability assays revealed that Fe(III)-citrate, erastin, and RSL3 induced cell death. Cotreatment with ferrostatin-1, a ferroptosis inhibitor, inhibited cell death in all conditions. mTOR overexpression suppressed Fe(III)-citrate, erastin, and RSL3-induced cell death, whereas mTOR deletion exaggerated cell death in these conditions. 2',7'-Dichlorodihydrofluorescein diacetate measurement of reactive oxygen species (ROS) production showed that erastin-induced ROS production was significantly lower in mTOR transgenic versus control CMs. These findings suggest that ferroptosis is a significant type of cell death in CMs and that mTOR plays an important role in protecting CMs against excess iron and ferroptosis, at least in part, by regulating ROS production. Understanding the effects of mTOR in preventing iron-mediated cell death will provide a new therapy for patients with myocardial infarction. NEW & NOTEWORTHY Ferroptosis has recently been reported as a new form of iron-dependent nonapoptotic cell death. However, ferroptosis in the heart is not well characterized. Using cultured adult mouse cardiomyocytes, we demonstrated that the mechanistic target of rapamycin plays an important role in protecting cardiomyocytes against excess iron and ferroptosis. Topics: Animals; Carbolines; Cell Death; Cell Survival; Cells, Cultured; Cyclohexylamines; Ferric Compounds; Iron; Male; Mice, Inbred C57BL; Mice, Transgenic; Myocardial Reperfusion Injury; Myocytes, Cardiac; Phenylenediamines; Piperazines; Reactive Oxygen Species; Signal Transduction; TOR Serine-Threonine Kinases | 2018 |
miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma.
Ferroptosis is a regulated form of cell death driven by small molecules or conditions that induce lipid-based reactive oxygen species (ROS) accumulation. This form of iron-dependent cell death is morphologically and genetically distinct from apoptosis, necroptosis, and autophagy. miRNAs are known to play crucial roles in diverse fundamental biological processes. However, to date no study has reported miRNA-mediated regulation of ferroptosis. Here we show that miR-137 negatively regulates ferroptosis by directly targeting glutamine transporter SLC1A5 in melanoma cells. Ectopic expression of miR-137 suppressed SLC1A5, resulting in decreased glutamine uptake and malondialdehyde (MDA) accumulation. Meanwhile, antagomir-mediated inactivation of endogenous miR-137 increased the sensitivity of melanoma cells to erastin- and RSL3-induced ferroptosis. Importantly, knockdown of miR-137 increased the antitumor activity of erastin by enhancing ferroptosis both in vitro and in vivo. Collectively, these data indicate that miR-137 plays a novel and indispensable role in ferroptosis by inhibiting glutaminolysis and suggest a potential therapeutic approach for melanoma. Topics: 3' Untranslated Regions; Amino Acid Transport System ASC; Animals; Antagomirs; Apoptosis; Cell Line, Tumor; Cyclohexylamines; Ferrous Compounds; Glutamine; Humans; Lipid Peroxidation; Malondialdehyde; Melanoma; Mice; Mice, Nude; MicroRNAs; Minor Histocompatibility Antigens; Phenylenediamines; Piperazines; Reactive Oxygen Species; RNA Interference; RNA, Small Interfering | 2018 |
Ferroptosis-inducing agents compromise in vitro human islet viability and function.
Human islet transplantation has been hampered by donor cell death associated with the islet preparation procedure before transplantation. Regulated necrosis pathways are biochemically and morphologically distinct from apoptosis. Recently, ferroptosis was identified as a non-apoptotic form of iron-dependent regulated necrosis implicated in various pathological conditions. Mediators of islet oxidative stress, including glutathione peroxidase-4 (GPX4), have been identified as inhibitors of ferroptosis, and mechanisms that affect GPX4 function can impact islet function and viability. Ferroptosis has not been investigated directly in human islets, and its relevance in islet transplantation remains unknown. Herein, we sought to determine whether in vitro human islet viability and function is compromised in the presence of two distinct ferroptosis-inducing agents (FIA), erastin or RSL3, and whether these effects could be rescued with ferroptosis inhibitors, ferrostatin-1 (Fer-1), or desferrioxamine (DFO). Viability, as assessed by lactate dehydrogenase (LDH) release, revealed significant death in erastin- and RSL3-treated islets, 20.3% ± 3.8 and 24.4% ± 2.5, 24 h post culture, respectively. These effects were ameliorated in islets pre-treated with Fer-1 or the iron chelator, desferrioxamine (DFO). Stimulation index, a marker of islet function revealed a significant reduction in function in erastin-treated islets (control 1.97 ± 0.13 vs. 50 μM erastin 1.32 ± 0.1) (p < 0.05). Fer-1 and DFO pre-treatment alone did not augment islet viability or function. Pre-treatment of islets with erastin or Fer-1 did not impact in vivo engraftment in an immunodeficient mouse transplant model. Our data reveal that islets are indeed susceptible to ferroptosis in vitro, and induction of this novel cell death modality leads to compromised islet function, which can be recoverable in the presence of the ferroptosis inhibitors. The in vivo impact of this pathway in islet transplantation remains elusive given the constraints of our study, but warrants continued investigation. Topics: Animals; Apoptosis; Carbolines; Cells, Cultured; Cyclohexylamines; Deferoxamine; gamma-Glutamylcyclotransferase; Glucose; Humans; Insulin Secretion; Iron; Islets of Langerhans; L-Lactate Dehydrogenase; Mice, Inbred C57BL; Phenylenediamines; Piperazines; RNA, Messenger; Tissue Survival | 2018 |
Cell growth potential drives ferroptosis susceptibility in rhabdomyosarcoma and myoblast cell lines.
Ferroptosis is a programmed form of iron-dependent cell death caused by lipid hydroperoxide accumulation, which can be prevented by glutathione peroxidase 4 (GPx4) activity. Here we investigated the effects of ferroptosis inducers called erastin and RSL3, which act by glutathione depletion and GPx4 inactivation, respectively, on muscle-derived cell lines of embryonal and alveolar rhabdomyosarcoma (RMS), and mouse normal skeletal C2C12 myoblasts.. Myogenic lines were exposed to stepwise increasing concentrations of ferroptosis inducers either alone or in combination with iron supplementation, iron chelating agents (bathophenanthrolinedisulfonic acid, BPS), antioxidant molecules (glutathione, N-acetylcysteine), lipid peroxidation inhibitors (ferrostatin-1), and chemotherapeutic agents (doxorubicin and actinomycin D). Drug susceptibility was quantified by measuring cell viability, proliferation and differentiation via neutral red assay, crystal violet assay and Giemsa staining, respectively. The detection of lipid hydroperoxide and protein levels was performed by immunofluorescence and Western blot analysis, respectively.. Erastin and RSL3 increased lipid hydroperoxide levels preferentially in the embryonal U57810 and myoblast C2C12 lines, leading to ferroptosis that was accentuated by iron supplementation or prevented by co-treatment with BPS, glutathione, N-acetylcysteine and ferrostatin-1. The inhibition of extracellular regulated kinases (ERK) pathway prevented ferroptosis in U57810 and C2C12 cells, whereas its increased activation in the embryonal RD cells mediated by caveolin-1 (Cav-1) overexpression led to augmented ferroptosis susceptibility. Finally, we observed the combination of erastin or RSL3 with chemotherapeutic doxorubicin and actinomycin D agents to be effective in increasing cell death in all RMS lines.. Erastin and RSL3 trigger ferroptosis in highly proliferating myogenic lines through a ERK pathway-dependent fashion. Topics: Animals; Carbolines; Cell Death; Cell Line; Cell Line, Tumor; Cell Proliferation; Cyclohexylamines; Dactinomycin; Doxorubicin; Glutathione; Glutathione Peroxidase; Humans; Lipid Peroxidation; Mice; Myoblasts; Phenylenediamines; Piperazines; Rhabdomyosarcoma | 2018 |
Ferroptosis: an iron-dependent form of nonapoptotic cell death.
Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Topics: Animals; Cell Death; Cyclohexylamines; Fibroblasts; Glutamic Acid; Hippocampus; Humans; In Vitro Techniques; Iron; Lipid Metabolism; Neoplasms; Phenylenediamines; Piperazines; Rats; Reactive Oxygen Species | 2012 |