ferrihydrite has been researched along with goethite* in 82 studies
1 review(s) available for ferrihydrite and goethite
Article | Year |
---|---|
Application of infrared spectroscopy and its theoretical simulation to arsenic adsorption processes.
Accurate detection and analysis of arsenic pollutants are an important means to enhance the ability to manage arsenic pollution. Infrared (IR) spectroscopy technology has the advantages of fast analysis speed, high resolution, and high sensitivity and can be monitored by real-time in situ analysis. This paper reviews the application of IR spectroscopy in the qualitative and quantitative analysis of inorganic and organic arsenic acid adsorbed by major minerals such as ferrihydrite (FH), hematite, goethite, and titanium dioxide. The IR spectroscopy technique cannot only identify different arsenic contaminants but also obtain the content and adsorption rate of arsenic contaminants in the solid phase. The reaction equilibrium constants and the degree of reaction conversion can be determined by constructing adsorption isotherms or combining them with modeling techniques. Theoretical calculations of IR spectra of mineral adsorbed arsenic pollutant systems based on density functional theory (DFT) and analysis and comparison of the measured and theoretically calculated characteristic peaks of IR spectra can reveal the microscopic mechanism and surface chemical morphology of the arsenic adsorption process. This paper systematically summarizes the qualitative and quantitative studies and theoretical calculations of IR spectroscopy in inorganic and organic arsenic pollutant adsorption systems, which provides new insights for accurate detection and analysis of arsenic pollutants and arsenic pollution control. PRACTITIONER POINTS: This paper reviews the application of infrared spectroscopy in the qualitative and quantitative analyses of inorganic and organic arsenic acid adsorbed by major minerals such as ferrihydrite, hematite, goethite, and titanium dioxide, which can help identify and evaluate the type and concentration of arsenic pollutants in water bodies. In this paper, theoretical calculations of infrared spectra of mineral adsorbed arsenic pollutant systems based on density functional theory reveal the adsorption mechanism of arsenic pollutants in water at the solid-liquid interface and help to develop targeted arsenic pollution control technologies. This paper provides a new and reliable analytical detection technique for the study of arsenic contaminants in water bodies. Topics: Adsorption; Arsenic; Arsenicals; Ferric Compounds; Minerals; Organic Chemicals; Spectrophotometry, Infrared; Spectroscopy, Fourier Transform Infrared; Water; Water Pollutants, Chemical | 2023 |
1 trial(s) available for ferrihydrite and goethite
Article | Year |
---|---|
Effect of 12-week of aerobic exercise on hormones and lipid profile status in adolescent girls with polycystic ovary syndrome: A study during COVID-19.
Over the last 3 years, there has been a proliferation of legislation aimed at restricting the rights of transgender Americans, including their access to gender-affirming health care. While the health implications of not having access to gender-affirming care are well documented, there may be additional indirect harms associated with proposing this type of legislation, such as those associated with being exposed to negative messages about transgender people or having to contend with friends and family who support the legislation.. Results showed that news consumption was associated with increased rumination and physical health symptoms and that perceived support for the legislation was associated with greater rumination, depressive symptoms, physical health symptoms, and fear of disclosing one's identity. Themes from the open-ended questions further underscored that the current legislation has impacted transgender youth and young adults' access to general health care; increased experiences of discrimination and other maltreatment; and resulted in some respondents engaging in unhealthy coping responses.. Policy makers should consider these adverse consequences when responding to current, and crafting future, legislation directed at transgender Americans.. Supplementary material is available in the online version of this article at 10.1007/s11814-023-1461-8.. Hyperglycemia at admission was associated with poor outcomes in COVID-19 patients, even in those without known pre-existing diabetes. Glycemic testing should be recommended for all COVID-19 patients.. Intermittent relacorilant + nab-paclitaxel improved PFS, DOR, and OS compared with nab-paclitaxel monotherapy. On the basis of protocol-prespecified Hochberg step-up multiplicity adjustment, the primary end point did not reach statistical significance ( Topics: Acute Kidney Injury; Adult; Aged; Albumins; Alloys; Amides; Amino Acids; Animals; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Bioaccumulation; Blood Glucose; Brain; Brassica napus; Breast Neoplasms; Carcinoma, Ovarian Epithelial; Catalysis; Child; China; Chlorides; Chlorine; Chromium; Chronic Disease; Cohort Studies; Copper; Corrosion; COVID-19; Creatinine; Dermatitis; Diabetes Mellitus; Diazepam; Disease-Free Survival; DNA Repair; DNA-(Apurinic or Apyrimidinic Site) Lyase; Dyspnea; Electron Spin Resonance Spectroscopy; Environmental Monitoring; Escherichia coli; Escherichia coli Infections; Esophageal Neoplasms; Esophagogastric Junction; Estradiol; Exercise Test; Exercise Tolerance; Female; Ferric Compounds; Fishes; Food Chain; gamma-Aminobutyric Acid; Genomics; Halogenation; HEK293 Cells; Hemolysis; Heterocyclic Compounds; Hospitalization; Humans; Hydrogen Peroxide; Hyperglycemia; Introns; Iron; Kidney; Kinetics; Laboratories; Limit of Detection; Lipopolysaccharides; Liver Neoplasms; Magnesium; Male; Mammals; Materials Testing; Mercury; Metal-Organic Frameworks; Methylmercury Compounds; Mice; Microscopy, Electron, Scanning; Mifepristone; Minerals; Molecular Weight; Mutation; Nanoparticles; Neuroprotection; NF-kappa B; Nitrates; Nitrogen; NLR Family, Pyrin Domain-Containing 3 Protein; Orthopedics; Ovarian Neoplasms; Ovariectomy; Oxidation-Reduction; Oxidative Stress; Oxygen; Oxygen Consumption; Paclitaxel; Phenols; Progesterone; Prospective Studies; Proteins; Protons; Pulmonary Disease, Chronic Obstructive; Ramucirumab; Rats; Receptor, ErbB-2; Respiratory Function Tests; Retrospective Studies; Saliva; SARS-CoV-2; Seeds; Sesbania; Shock, Septic; Silicon Dioxide; Sleep; Soil; Specimen Handling; Spectroscopy, Mossbauer; Spin Labels; Staphylococcus aureus; Stomach Neoplasms; Streptococcus mutans; Thiamine; Toll-Like Receptor 2; Toll-Like Receptor 4; Trastuzumab; Tumor Microenvironment; Tumor Necrosis Factor-alpha; Ubiquitin-Protein Ligases; Water; Water Pollutants, Chemical; Water Purification; Xeroderma Pigmentosum; Zebrafish | 2023 |
80 other study(ies) available for ferrihydrite and goethite
Article | Year |
---|---|
Enhanced cadmium removal by biochar and iron oxides composite: Material interactions and pore structure.
The combination of biochar (BC) and iron minerals improves their pollutant adsorption capacity. However, little is known about the reactivity of BC-iron mineral composites regarding their interaction and change in the pore structure. In this study, the mechanism of cadmium (Cd) adsorption by BC-iron oxide composites, such as BC combined with ferrihydrite (FH) or goethite (GT), was explored. The synergistic effect of the BC-FH composite significantly improved its Cd adsorption capacity. The adsorption efficiencies of BC-FH and BC-GT increased by 15.0% and 10.8%, respectively, compared with that of uncombined BC, FH, and GT. The strong Cd adsorption by BC-FH was attributed to stable interactions and stereoscopic pore filling between BC and FH. The scanning electron microscopy results showed that FH particles entered the BC pores, whereas GT particles were loaded onto the BC surface. FTIR spectroscopy showed that GT covered a larger area of the BC surface than FH. After loading FH and GT, BC porosities decreased by 9.3% and 4.1%, respectively. Quantum chemical calculations and independent gradient mode analysis showed that van der Waals interactions, H-bonds, and covalent-like interactions maintained stability between iron minerals and BC. Additionally, humic acid increased the agglomeration of iron oxides and formed larger particles, causing additional aggregates to load onto the BC surface instead of entering the BC pores. Our results provide theoretical support to reveal the interfacial behavior of BC-iron mineral composites in soil and provide a reference for field applications of these materials for pollution control and environmental remediation. Topics: Adsorption; Cadmium; Charcoal; Iron; Minerals; Oxides; Water Pollutants, Chemical | 2023 |
Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar.
Numerous studies have explored the adsorption of cadmium (Cd) and arsenic (As) by iron (Fe)-modified biochar, but few studies have examined in-depth the similarities and differences in the adsorption behavior of different iron types on Cd and As. In this study, sewage sludge biochar (BC) was co-pyrolyzed with self-made Fe minerals (magnetite, hematite, ferrihydrite, goethite, and schwertmannite) to treat Cd and As co-contaminated water. The adsorption of Cd and As on the Fe-modified biochar was further analyzed by adsorption kinetics, adsorption isotherms, and adsorption thermodynamics combined with a series of characterization experiments. Both SEM-EDX and XRD results confirmed the successful loading of iron minerals onto BC. Both adsorption kinetics and adsorption isotherms experiments showed that the adsorption of Cd and As by BC and the other five Fe-modified biochar was mainly controlled by chemical interactions. The results also indicated that goethite biochar (GtBC) was the most effective for the adsorption of Cd among the five Fe-modified biochar. Ferrihydrite biochar (FhBC) formed more diverse complexes, coupled with the relatively stronger electrons accepting ability, thus making it more effective for As adsorption than the others. Additionally, GtBC and hematite biochar (HmBC) were found effective for the adsorption of both Cd and As, whereas MBC was not found effective for either metal. Furthermore, combined with XPS results, the adsorption of Cd by the materials was mainly governed by Cd Topics: Adsorption; Arsenic; Cadmium; Charcoal; Iron; Minerals; Sewage; Water Pollutants, Chemical | 2023 |
Generic CD-MUSIC-eSGC model parameters to predict the surface reactivity of iron (hydr)oxides.
The surface reactivity of iron (hydr)oxides plays a crucial role in controlling their interfacial reactions, for which various surface complexation models have been developed. The diversity of mineralogical properties of iron (hydr)oxides has resulted in a redundancy of model parameters, which hampers the modeling of iron (hydr)oxides in soils and sediments, where goethite, hematite and ferrihydrite dominate the iron (hydr)oxide mass fraction. To capture their combined surface reactivity, optimized generic protonation parameters of the Charge Distribution-Multisite Complexation (CD-MUSIC) extended-Stern-Gouy-Chapman (eSGC) model were derived by reanalyzing literature datasets and tested with some newly synthesized iron (hydr)oxides. It was observed that the proton and monovalent ion affinity constants of the different iron (hydr)oxides were located in a narrow range. For the singly- and triply-coordinated hydroxyl sites the obtained generic log(affinity constants) were 8.3 and 11.7 for the protonation reaction and -0.5 for the reaction with the monovalent background ions. Their combination with fixed site densities of singly-/triply-coordinated hydroxyl sites of 3.45/2.70, 5.00/2.50, and 5.80/1.40 sites/nm Topics: Adsorption; Ferric Compounds; Iron; Minerals; Music; Oxides; Protons | 2023 |
Enhanced immobility of Pb(II) during ferrihydrite-Pb(II) coprecipitates aging impacted by malic acid or phosphate.
Metastable ferrihydrite is omnipresent in environments and can influence the fate of Pb(II) during ferrihydrite transformation. Ferrihydrite is rarely pure and often coexists with impurities, which may influence the mineralogical changes of ferrihydrite and Pb(II) behavior. In this work, we investigated the effect of malic acid or phosphate on Pb(II)-ferrihydrite coprecipitates (Fh-Pb) transformation and the subsequent fate of Pb(II) during the 10-day aging of Fh-Pb. Results showed that both malic acid and phosphate retarded Fh-Pb transformation and prevented the release of Pb(II) from Fh-Pb back into solutions. Pb(II) was beneficial to goethite formation by inhibiting hematite formation while both malic acid and phosphate inhibited goethite formation since they could act as templates of nucleation. Besides, malic acid and phosphate improved the proportion of non-extracted Pb(II) during Fh-Pb transformation, indicating that Pb(II) was incorporated into secondary minerals. Pb(II) could not replace Fe(III) within the crystal lattice due to its large radius but was occluded into pores and defect structures within the secondary mineral lattices. This work can advance our understanding of the influences of malic acid and phosphate on Pb(II) immobility during Fh-Pb aging. Topics: Ferric Compounds; Lead; Minerals; Oxidation-Reduction; Phosphates | 2023 |
Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
Topics: Antimony; Arsenic; Ferric Compounds; Ferrosoferric Oxide; Geobacter; Minerals; Oxidation-Reduction | 2023 |
Effect of manganese oxides on arsenic speciation and mobilization in different arsenic-adsorbed iron-minerals under microbially-reducing conditions.
The oxidation and immobilization of arsenic (As) by manganese oxides have been shown to reduce As toxicity and bioavailability under abiotic conditions. In this study, we investigate the impact of manganese oxide (δ-MnO Topics: Arsenic; Ferric Compounds; Iron; Manganese; Manganese Compounds; Minerals; Oxidation-Reduction; Oxides | 2023 |
Closing the knowledge gap on the composition of the asbestos bodies.
Asbestos bodies (AB) form in the lungs as a result of a biomineralization process initiated by the alveolar macrophages in the attempt to remove asbestos. During this process, organic and inorganic material deposit on the foreign fibers forming a Fe-rich coating. The AB start to form in months, thus quickly becoming the actual interface between asbestos and the lung tissue. Therefore, revealing their composition, and, in particular, the chemical form of Fe, which is the major component of the AB, is essential to assess their possible role in the pathogenesis of asbestos-related diseases. In this work we report the result of the first x-ray diffraction measurements performed on single AB embedded in the lung tissue samples of former asbestos plant workers. The combination with x-ray absorption spectroscopy data allowed to unambiguously reveal that Fe is present in the AB in the form of two Fe-oxy(hydroxides): ferrihydrite and goethite. The presence of goethite, which can be explained in terms of the transformation of ferrihydrite (a metastable phase) due to the acidic conditions induced by the alveolar macrophages in their attempt to phagocytose the fibers, has toxicological implications that are discussed in the paper. Topics: Asbestos; Asbestosis; Humans; Lung | 2023 |
Fe(II)-Catalyzed Transformation of Ferrihydrite with Different Degrees of Crystallinity.
Natural occurring ferrihydrite (Fh) nanoparticles have varying degrees of crystallinity, but how Fh crystallinity affects its transformation behavior remains elusive. Here, we investigated the Fe(II)-catalyzed transformation of Fh with different degrees of crystallinity ( Topics: Catalysis; Ferric Compounds; Ferrosoferric Oxide; Iron; Minerals; Oxidation-Reduction | 2023 |
Reductive Sequestration of Cr(VI) and Immobilization of C during the Microbially Mediated Transformation of Ferrihydrite-Cr(VI)-Fulvic Acid Coprecipitates.
Cr(VI) detoxification and organic matter (OM) stabilization are usually influenced by the biological transformation of iron (Fe) minerals; however, the underlying mechanisms of metal-reducing bacteria on the coupled kinetics of Fe minerals, Cr, and OM remain unclear. Here, the reductive sequestration of Cr(VI) and immobilization of fulvic acid (FA) during the microbially mediated phase transformation of ferrihydrite with varying Cr/Fe ratios were investigated. No phase transformation occurred until Cr(VI) was completely reduced, and the ferrihydrite transformation rate decreased as the Cr/Fe ratio increased. Microscopic analysis was uncovered, which revealed that the resulting Cr(III) was incorporated into the lattice structure of magnetite and goethite, whereas OM was mainly adsorbed on goethite and magnetite surfaces and located within pore spaces. Fine line scan profiles showed that OM adsorbed on the Fe mineral surface had a lower oxidation state than that within nanopores, and C adsorbed on the magnetite surface had the highest oxidation state. During reductive transformation, the immobilization of FA by Fe minerals was predominantly via surface complexation, and OM with highly aromatic and unsaturated structures and low H/C ratios was easily adsorbed by Fe minerals or decomposed by bacteria, whereas Cr/Fe ratios had little effect on the binding of Fe minerals and OM and the variations in OM components. Owing to the inhibition of crystalline Fe minerals and nanopore formation in the presence of Cr, Cr sequestration and C immobilization can be synchronously favored at low Cr/Fe ratios. These findings provide a profound theoretical basis for Cr detoxification and synchronous sequestration of Cr and C in anoxic soils and sediments. Topics: Chromium; Ferric Compounds; Ferrosoferric Oxide; Minerals; Oxidation-Reduction | 2023 |
Antimony Isotope Fractionation Revealed from EXAFS during Adsorption on Fe (Oxyhydr)oxides.
A lack of knowledge about antimony (Sb) isotope fractionation mechanisms in key geochemical processes has limited its environmental applications as a tracer. Naturally widespread iron (Fe) (oxyhydr)oxides play a key role in Sb migration due to strong adsorption, but the behavior and mechanisms of Sb isotopic fractionation on Fe (oxyhydr)oxides are still unclear. Here, we investigate the adsorption mechanisms of Sb on ferrihydrite (Fh), goethite (Goe), and hematite (Hem) using extended X-ray absorption fine structure (EXAFS) and show that inner-sphere complexation of Sb species with Fe (oxyhydr)oxides occurs independent of pH and surface coverage. Lighter Sb isotopes are preferentially enriched on Fe (oxyhydr)oxides due to isotopic equilibrium fractionation, with neither surface coverage nor pH influencing the degree of fractionation (Δ Topics: Adsorption; Antimony; Ferric Compounds; Isotopes; Oxides; Water; X-Rays | 2023 |
Mineral transformation of poorly crystalline ferrihydrite to hematite and goethite facilitated by an acclimated microbial consortium in electrodes of soil microbial fuel cells.
In this study, we investigated the biogenic mineral transformation of poorly crystalline ferrihydrite in the presence of an acclimated microbial consortium after confirming successful soil microbial fuel cell optimization. The acclimated microbial consortia in the electrodes distinctly transformed amorphous ferrihydrite into crystallized hematite (cathode) and goethite (anode) under ambient culture conditions (30 °C). Serial analysis, including transmission/scanning electron microscopy and X-ray/selected area electron diffraction, confirmed that the biogenically synthesized nanostructures were iron nanospheres (~100 nm) for hematite and nanostars (~300 nm) for goethite. Fe(II) ion production with acetate oxidation via anaerobic respiration was much higher in the anode electrode sample (3.2- to 17.8-fold) than for the cathode electrode or soil samples. Regarding the culturable bacteria from the acclimated microbial consortium, the microbial isolates were more abundant and diverse at the anode. These results provide new insights into the biogeochemistry of iron minerals and microbial fuel cells in a soil environment, along with physiological characters of microbes (i.e., iron-reducing bacteria), for in situ applications in sustainable energy research. Topics: Bacteria; Bioelectric Energy Sources; Electrodes; Ferric Compounds; Iron; Microbial Consortia; Minerals; Oxidation-Reduction; Soil | 2023 |
Transformation of 2-Line Ferrihydrite to Goethite at Alkaline pH.
The transformation of 2-line ferrihydrite to goethite from supersaturated solutions at alkaline pH ≥ 13.0 was studied using a combination of benchtop and advanced synchrotron techniques such as X-ray diffraction, thermogravimetric analysis, and X-ray absorption spectroscopy. In comparison to the transformation rates at acidic to mildly alkaline environments, the half-life, Topics: Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Minerals; Oxidation-Reduction; Water | 2023 |
The effect of iron oxide types on the photochemical transformation of organic phosphorus in water.
Iron oxides play an important role in the transport and transformation of organic phosphorus in aquatic environments. However, the effect of different types of iron oxide on the environmental fate of organic phosphorus has remained unclear. In this study, the photodegradation of the organic phosphorus compound adenosine triphosphate (ATP) via the activity of crystalline (goethite) and amorphous (ferrihydrite) iron oxides was investigated. It was found that ATP was photodegraded by goethite, resulting in the release of dissolved inorganic phosphate under simulated sunlight irradiation. The concentration of ATP on goethite decreased by 75% after 6 h of simulated sunlight irradiation, while the concentration of ATP on ferrihydrite decreased by only 22%. ATR-FTIR spectroscopy revealed that the intensity of the peaks for the P-O and PO stretching vibrations in the goethite-ATP complex decreased significantly more after simulated sunlight irradiation than did those for the ferrihydrite treatment. Combined with the higher TOC/TOC Topics: Adenosine Triphosphate; Ferric Compounds; Iron; Iron Compounds; Minerals; Oxidation-Reduction; Phosphates; Phosphorus; Reactive Oxygen Species; Superoxides; Water | 2022 |
Coexisting Goethite Promotes Fe(II)-Catalyzed Transformation of Ferrihydrite to Goethite.
In redox-affected soil environments, electron transfer between aqueous Fe(II) and solid-phase Fe(III) catalyzes mineral transformation and recrystallization processes. While these processes have been studied extensively as independent systems, the coexistence of iron minerals is common in nature. Yet it remains unclear how coexisting goethite influences ferrihydrite transformation. Here, we reacted ferrihydrite and goethite mixtures with Fe(II) for 24 h. Our results demonstrate that with more goethite initially present in the mixture more ferrihydrite turned into goethite. We further used stable Fe isotopes to label different Fe pools and probed ferrihydrite transformation in the presence of goethite using Topics: Catalysis; Ferric Compounds; Ferrous Compounds; Iron Compounds; Isotopes; Minerals; Oxidation-Reduction; Soil; Water | 2022 |
Ferrihydrite transformations in flooded paddy soils: rates, pathways, and product spatial distributions.
Complex interactions between redox-driven element cycles in soils influence iron mineral transformation processes. The rates and pathways of iron mineral transformation processes have been studied intensely in model systems such as mixed suspensions, but transformation in complex heterogeneous porous media is not well understood. Here, mesh bags containing 0.5 g of ferrihydrite were incubated in five water-saturated paddy soils with contrasting microbial iron-reduction potential for up to twelve weeks. Using X-ray diffraction analysis, we show near-complete transformation of the ferrihydrite to lepidocrocite and goethite within six weeks in the soil with the highest iron(II) release, and slower transformation with higher ratios of goethite to lepidocrocite in soils with lower iron(II) release. In the least reduced soil, no mineral transformations were observed. In soils where ferrihydrite transformation occurred, the transformation rate was one to three orders of magnitude slower than transformation in comparable mixed-suspension studies. To interpret the spatial distribution of ferrihydrite and its transformation products, we developed a novel application of confocal micro-Raman spectroscopy in which we identified and mapped minerals on selected cross sections of mesh bag contents. After two weeks of flooded incubation, ferrihydrite was still abundant in the core of some mesh bags, and as a rim at the mineral-soil interface. The reacted outer core contained unevenly mixed ferrihydrite, goethite and lepidocrocite on the micrometre scale. The slower rate of transformation and uneven distribution of product minerals highlight the influence of biogeochemically complex matrices and diffusion processes on the transformation of minerals, and the importance of studying iron mineral transformation in environmental media. Topics: Ferric Compounds; Ferrous Compounds; Iron; Minerals; Oxidation-Reduction; Soil; Water | 2022 |
Oxyanion Surface Complexes Control the Kinetics and Pathway of Ferrihydrite Transformation to Goethite and Hematite.
The rate and pathway of ferrihydrite (Fh) transformation at oxic conditions to more stable products is controlled largely by temperature, pH, and the presence of other ions in the system such as nitrate (NO Topics: Adsorption; Ferric Compounds; Kinetics; Minerals | 2022 |
The Effect of High Selenite and Selenate Concentrations on Ferric Oxyhydroxides Transformation under Alkaline Conditions.
Iron-based nanomaterials have high technological impacts on various pro-environmental applications, including wastewater treatment using the co-precipitation method. The purpose of this research was to identify the changes of iron nanomaterial's structure caused by the presence of selenium, a typical water contaminant, which might affect the removal when the iron co-precipitation method is used. Therefore, we have investigated the maturation of co-precipitated nanosized ferric oxyhydroxides under alkaline conditions and their thermal transformation into hematite in the presence of selenite and selenate with high concentrations. Since the association of selenium with precipitates surfaces has been proven to be weak, the mineralogy of the system was affected insignificantly, and the goethite was identified as an only ferric phase in all treatments. However, the morphology and the crystallinity of ferric oxyhydroxides was slightly altered. Selenium affected the structural order of precipitates, especially at the initial phase of co-precipitation. Still, the crystal integrity and homogeneity increased with time almost constantly, regardless of the treatment. The thermal transformation into well crystalized hematite was more pronounced in the presence of selenite, while selenate-treated and selenium-free samples indicated the presence of highly disordered fraction. This highlights that the aftermath of selenium release does not result in destabilization of ferric phases; however, since weak interactions of selenium are dominant at alkaline conditions with goethite's surfaces, it still poses a high risk for the environment. The findings of this study should be applicable in waters affected by mining and metallurgical operations. Topics: Alkalies; Chemical Precipitation; Crystallization; Ferric Compounds; Iron; Iron Compounds; Minerals; Selenic Acid; Selenious Acid; Spectroscopy, Fourier Transform Infrared; Spectroscopy, Mossbauer; Temperature | 2021 |
Three-dimensional transfer of Cr(VI) co-precipitated with ferrihydrite containing silicate and its redistribution and retention during aging.
Understanding the redistribution and retention of chromium(VI) (Cr(VI)) co-precipitated with silicate-containing ferrihydrite during aging is essential to the stabilization and immobilization of Cr(VI) in nature. In this work, Cr(VI) was removed by co-precipitated with silicate-containing ferrihydrite with various Si/Fe ratios at different precipitating pH. The co-precipitates were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy before and after aging for 9 days at 80 °C. Results showed that silicate not only competed with Cr(VI) adsorbed on ferrihydrite surface by forming inner-sphere complexes, but also inhibited ferrihydrite transforming into more stable and compact iron phases. Ferrihydrite only transformed to hematite at pH Topics: Adsorption; Chromium; Ferric Compounds; Iron; Iron Compounds; Microscopy, Electron, Transmission; Minerals; Models, Chemical; Photoelectron Spectroscopy; Silicates; Spectroscopy, Fourier Transform Infrared; X-Ray Diffraction | 2019 |
Fate of Lu(III) sorbed on 2-line ferrihydrite at pH 5.7 and aged for 12 years at room temperature. I: insights from ICP-OES, XRD, ESEM, AsFlFFF/ICP-MS, and EXAFS spectroscopy.
Two-line ferrihydrite (2LFh) was aged for 12 years under ambient conditions and sheltered from light in the presence of Lu(III) used as surrogate for trivalent actinides. 2LFh aging produced hematite rhombohedra with overgrown acicular goethite particles. Analysis of the homogeneous suspension by asymmetrical flow field-flow fractionation (AsFlFFF) coupled to ICP-MS indicated that particles have a mean hydrodynamic diameter of about 140 nm and the strong correlation of the Fe and Lu fractograms hinted at a structural association of the lanthanide with the solid phase(s). Unfortunately, recoveries were low and thus results cannot be considered representative of the whole sample. The suspension was centrifuged and X-ray absorption spectroscopy (XAS) at the Lu L Topics: Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Lutetium; Mass Spectrometry; Microscopy, Electron, Scanning; Minerals; Temperature; Time Factors; X-Ray Absorption Spectroscopy; X-Ray Diffraction | 2019 |
Fate of Lu(III) sorbed on 2-line ferrihydrite at pH 5.7 and aged for 12 years at room temperature. II: insights from STEM-EDXS and DFT calculations.
Transformation products of two-line ferrihydrite associated with Lu(III) were studied after 12 years of aging using aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), high-efficiency energy-dispersive X-ray spectroscopy (EDXS), and density functional theory (DFT). The transformation products consisted of hematite nanoparticles with overgrown goethite needles. High-efficiency STEM-EDXS revealed that Lu is only associated with goethite needles, and atomic-resolution HAADF-STEM reveals structural incorporation of Lu within goethite, partially replacing structural Fe sites. This finding corroborates those recently obtained by AsFlFFF and EXAFS spectroscopy on the same sample (Finck et al. 2018). DFT calculations indicate that Lu incorporation within goethite or hematite are almost equally likely, suggesting that experimental parameters such as temperature and reaction time which affect reaction kinetics, play important roles in determining the Lu uptake. It seems likely that these results may be transferable to predict the behavior of chemically homologous trivalent actinides. Topics: Adsorption; Density Functional Theory; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Kinetics; Lutetium; Microscopy, Electron, Scanning Transmission; Minerals; Spectrometry, X-Ray Emission; Temperature; Time Factors | 2019 |
A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
Iron oxides are important pedogenic Cr(III)-bearing phases which experience high-temperature alteration via fire-induced heating of surface soil. In this study, we examine if heating-induced alteration of Cr(III)-substituted Fe oxides can potentially facilitate rapid high-temperature oxidation of solid-phase Cr(III) to hazardous Cr(VI). Synthetic Cr(III)-substituted ferrihydrite, goethite and hematite were heated up to 800 °C for 2 h. Corresponding heating experiments were also conducted on an unpolluted Ferrosol-type soil, which had a total Cr content of 220 mg kg Topics: Chromium; Ferric Compounds; Fires; Iron Compounds; Minerals; Oxidation-Reduction; Oxides; Soil; Soil Pollutants | 2019 |
Electrochemical Analysis of Changes in Iron Oxide Reducibility during Abiotic Ferrihydrite Transformation into Goethite and Magnetite.
Electron transfer to ferric iron in (oxyhydr-)oxides (hereafter iron oxides) is a critical step in many processes that are central to the biogeochemical cycling of elements and to pollutant dynamics. Understanding these processes requires analytical approaches that allow for characterizing the reactivity of iron oxides toward reduction under controlled thermodynamic boundary conditions. Here, we used mediated electrochemical reduction (MER) to follow changes in iron oxide reduction extents and rates during abiotic ferrous iron-induced transformation of six-line ferrihydrite. Transformation experiments (10 mM ferrihydrite-Fe Topics: Ferric Compounds; Ferrosoferric Oxide; Iron Compounds; Minerals; Oxidation-Reduction | 2019 |
Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt Bio-bi-minerals).
Biogenic iron(III) minerals (BIM) widely occur in aquatic systems. However, characteristics and mechanisms of As sequestration by biogenic biphasic Fe(III) minerals (Bio-bi-minerals) are not clearly understood. We investigated characteristics of Bio-bi-minerals induced by Pseudogulbenkiania sp. strain 2002 and explored their As sequestration mechanisms by monitoring particle morphology, mineralogical composition, and As binding properties. Results showed that Fe(II) oxidation (about 3 mM) by Pseudogulbenkiania sp. strain 2002 under growth condition produced biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt Bio-bi-minerals), which showed better performance in As immobilization compared to corresponding biogenic monophasic Fe(III) minerals (Bio-mono-minerals). Decreased particle size, increased abundance of ferrihydrite and occurrence of bidentate mononuclear edge-sharing ( Topics: Adsorption; Arsenic; Bacteria; Biodegradation, Environmental; Ferric Compounds; Groundwater; Iron Compounds; Minerals; Nitrates; Water Pollutants, Chemical | 2019 |
Effects of iron (hydr)oxides on the degradation of diethyl phthalate ester in heterogeneous (photo)-Fenton reactions.
This work studied the structural effects of hematite (α-Fe Topics: Ferric Compounds; Hydrogen Peroxide; Iron Compounds; Kinetics; Minerals; Models, Chemical; Phthalic Acids; Ultraviolet Rays | 2019 |
Sulfide drives hydroxyl radicals production in oxic ferric oxyhydroxides environments.
Perturbation of Fe(III)-bearing oxic environments by reduced species such as sulfide occurs widely in natural and engineered systems. However, whether hydroxyl radicals (OH) can be produced in these environments remains unexplored. Here we show that sulfide drives OH production in Fe(III) oxyhydroxides suspensions under neutral and oxic conditions. For lepidocrocite, ferrihydrite and goethite suspensions at 11.2 mM Fe, the addition of 0.5 mM sulfide produced 14.2, 14.3 and 22.4 μM OH within 120 min, respectively. With addition of sulfide to lepidocrocite suspensions at 11.2 mM Fe, the cumulative OH concentration within 120 min increased from 0 to 14.2, 25.2, 52.6 and 63.1 μM when sulfide dosage increased from 0 to 0.5, 2.5, 5 and 7.5 mM, respectively. At a fixed sulfide dosage of 5 mM, the cumulative OH concentration increased with increasing the number of sulfide additions. The mechanisms of OH production were attributed to the generation of surface-bound Fe(II), most likely in the form of >Fe Topics: Environmental Pollutants; Ferric Compounds; Hydroxyl Radical; Iron Compounds; Minerals; Oxidation-Reduction; Sulfides | 2019 |
Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong.
The behaviour of arsenic (As) from geogenic soil exposed to aerobic conditions is critical to predict the impact of As on the environment, which processes remain unresolved. The current study examined the depth profile of As in geologically derived subsoil cores from Hong Kong and investigated the mobilization, plant availability, and bioaccessibility of As in As-contaminated soil at different depths (0-45.8 m). Results indicated significant heterogeneity, with high levels of As in three layers of soil reaching up to 505 mg/kg at a depth of 5 m, 404 mg/kg at a depth of 15 m, and 1510 mg/kg at a depth of 27-32 m. Arsenic in porewater samples was <11.5 μg/L in the study site. X-ray absorption spectroscopy (XAS) indicated that main As species in soil was arsenate (As(V)), as adsorbed fraction to Fe oxides (41-69% on goethite and 0-8% on ferrihydrite) or the mineral form scorodite (30-57%). Sequential extraction procedure demonstrated that 0.5 ± 0.4% of As was exchangeable. Aerobic incubation experiments exhibited that a very small amount (0.14-0.48 mg/kg) of As was desorbed from the soil because of the stable As(V) complex structure on abundant Fe oxides (mainly goethite), where indigenous microbes partly (59 ± 18%) contributed to the release of As comparing with the sterilized control. Furthermore, no As toxicity in the soil was observed with the growth of ryegrass. The bioaccessibility of As was <27% in the surface soil using simplified bioaccessibility extraction test. Our systematic evaluation indicated that As in the geogenic soil profile from Hong Kong is relatively stable exposing to aerobic environment. Nevertheless, children and workers should avoid incidental contact with excavated soil, because high concentration of As was present in the digestive solution (<0.1-268 μg/L). Topics: Adsorption; Arsenic; Arsenicals; Child; Environmental Monitoring; Environmental Pollution; Ferric Compounds; Hong Kong; Humans; Iron Compounds; Minerals; Oxides; Soil; Soil Pollutants; X-Ray Absorption Spectroscopy | 2018 |
Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain.
The present work focuses on understanding the provenance, prevalence and health perspective of As and F Topics: Adsorption; Adult; Arsenic; Child; Child, Preschool; Cluster Analysis; Ferric Compounds; Fluorides; Groundwater; Humans; India; Iron Compounds; Minerals; Rivers; Uranium; Water Pollutants, Chemical; Young Adult | 2018 |
Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.
Microorganisms play a key role in the redox transformation of arsenic (As) in aquifers. In this study, the impact of indigenous bacteria, especially the prevailing nitrate respirers, on arsenite (As(III)) oxidation was explored during groundwater filtration using granular TiO Topics: Arsenates; Arsenic; Arsenites; Bacteria; Ferric Compounds; Filtration; Groundwater; Iron; Iron Compounds; Minerals; Nitrates; Oxidation-Reduction; Phylogeny; Proteobacteria; Water Pollutants, Chemical; X-Ray Absorption Spectroscopy | 2018 |
Bacterial bioreporter detection of arsenic associated with iron oxides.
Bacterial bioreporters are engineered microorganisms that have found recent application as a low-cost method of detecting arsenic (As) in environmental systems. However, no assessment exists of bioreporter detection of particle-bound As. We applied an Escherichia coli-based bioreporter to assess the bioavailability of As(v) adsorbed by goethite (α-FeOOH), 2-line ferrihydrite and As(v) co-precipitated with Fe(iii). We found that As(v) bound to the surface of crystalline goethite was not detected by the bioreporters, which contrasted sharply the 50% detection of As(v) adsorbed by ferrihydrite. In addition, the presence of Ca2+ caused a systematic decrease in the bioreporter-detected As(v) fraction in the ferrihydrite samples. For co-precipitated As(v)-Fe(iii) samples, we found a similar bioreporter-detected As(v) fraction (<0.2) regardless of crystallite size (0.7-2.5 nm) or As Fe-1 surface loading (10-60 mol%). Our results reveal that the bioreporter response depends largely on aggregated particle size, which is expected to physically isolate As(v) from bioreporters by encapsulating surface-bound As(v) in coagulated flocs. Our results show that while bioreporters do not perform optimally in water that contains Fe particles, this method could be developed for sludge testing and for monitoring As levels in the product water of decentralized Fe-based As treatment systems. Topics: Adsorption; Arsenic; Environmental Monitoring; Escherichia coli; Ferric Compounds; Iron; Iron Compounds; Minerals | 2018 |
Migration and fate of metallic elements in a waste mud impoundment and affected river downstream: A case study in Dabaoshan Mine, South China.
Fate of metallic elements and their migration mechanisms in a waste mud impoundment and affected downstream were assessed. Physicochemical and mineralogical methods combined with PHREEQC calculation, statistical analysis and review of relevant literatures were employed. Results showed that the waste in mud impoundment had been severely weathered and acidized. Metallic elements exhibited high mobility and activity, with a mobility ranking order of Cd > Zn > Mn > Cu ≈ Cr > As ≈ Pb. Hydraulic transportation originating from elevation variation was the most important driving force for metallic elements migration. Although damming standstill was considered as an effective strategy for controlling coarse suspended particulate pollutants, metallic elements were still transported to the Hengshi River in both dissolved phase and fine suspended particle phase accompanied by the overflow of acid mine drainage. The concentrations of dissolved metallic elements were attenuated significantly along the Hengshi River within 41 km stretch. Precipitation/ co-precipitation of iron oxyhydroxides, especially schwertmannite, ferrihydrite and goethite minerals, were established as the most critical processes for metallic elements attenuation in river water. Accompanied by metals migration in the river, two pollution sensitive sites with notably high content of metals in the stretch of S6-S8 and S10, were identified in gently sloping river stretch. Topics: China; Environmental Monitoring; Ferric Compounds; Iron Compounds; Metals; Minerals; Mining; Rivers; Water Pollutants, Chemical | 2018 |
Effectiveness of Ferric, Ferrous, and Aluminum (Hydr)Oxide Coprecipitation to Treat Water Contaminated with Arsenate.
Coprecipitation of Fe and Al (hydr)oxides has been considered a low-cost process to remove As from wastewater. Arsenate is the most stable form of As in aerobic environments such as surface water, soils, and sediments and can be removed from water through methods based on this process. Iron/aluminum molar ratios of 100:0, 80:20, and 60:40 were used to treat water contaminated with As at concentrations of 50 and 500 mg L. Aluminum, ferrous, and ferric sulfates were used to coprecipitate Al and Fe (hydr)oxides at high pH. Maghemite, magnetite, lepidocrocite, and goethite were detected in precipitates from Fe(II), whereas hematite and ferrihydrite were identified in Fe(III) treatments. Segregation of Al (hydr)oxides as gibbsite and bayerite as well as the Al isomorphic substitution in Fe (hydr)oxides were detected in the presence of Al. The precipitates were classified as nonhazardous according to the leaching test based on Brazilian Technical Standard NBR 10005. The presence of Al increased the stability of the sludge from Fe(II) treatments but did not affect the stability of precipitates from Fe(III) treatments. High efficiencies for As removal from water were obtained for all treatments, but concentrations of soluble As were, in general, lower for Fe(III) treatments especially, in the absence of Al. Treatments were efficient in reaching the threshold to effluent discharge (0.5 mg L), but only treatments with initially 50 mg L of As reached the threshold for drinking water (10 μg L). Topics: Adsorption; Aluminum; Arsenates; Brazil; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Minerals; Organic Chemicals; Oxidation-Reduction; Waste Disposal, Fluid; Water Pollutants, Chemical | 2018 |
Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
Topics: Adsorption; Arsenates; Colloids; Ferric Compounds; Humic Substances; Hydrogen-Ion Concentration; Iron Compounds; Minerals; Models, Chemical; Organic Chemicals; Oxides; Phosphorus; Soil; Ultrafiltration | 2017 |
Sorption specificity and desorption hysteresis of gibberellic acid on ferrihydrite compared to goethite, hematite, montmorillonite, and kaolinite.
The pesticide gibberellic acid (GA Topics: Adsorption; Bentonite; Diffusion; Endocrine Disruptors; Ferric Compounds; Gibberellins; Iron Compounds; Kaolin; Kinetics; Minerals | 2017 |
Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.
Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Topics: Adsorption; Aeromonas hydrophila; Anaerobiosis; Biodegradation, Environmental; Copper; Ferric Compounds; Iron; Iron Compounds; Minerals; Oxidation-Reduction; Soil Pollutants | 2017 |
Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage.
Being one of the largest copper-producing resources in Turkey, the Murgul deposit has been a source of environmental pollution for very long time. Operated through four open pits with an annual production of about 3 million tons of ore at an average grade of about 0.5% Cu, the deposit to date has produced an enormous pile of waste (exceeding 100 million tons) with tailings composed of 36 % SiO2, 39% Fe2O3 and 32% S, mainly in the form of pyrite and quartz. Waters in the vicinity of the deposit vary from high acid-acid (2.71-3.85) and high-extremely metal rich (34.48-348.12 mg/l in total) in the open pits to near neutral (6.51-7.83) and low metal (14.39-973.52 μg/l in total) in downstream environments. Despite low metal contents and near neutral pH levels of the latter, their suspended particle loads are extremely high and composed mainly of quartz and clay minerals with highly elevated levels of Fe (3.5 to 24.5% Fe2O3; 11% on average) and S (0.5 to 20.6% S; 7% on average), showing that Fe is mainly in the form of pyrite and lesser hematite. They also contain high concentrations of As, Au, Ba, Cu, Pb, and Zn. Waters collected along the course of polluted drainages are supersaturated with respect to Fe phases such as goethite, hematite, maghemite, magnetite, schwertmannite and ferrihydrite. Secondary phases such as Fe-sulphates are only found near the pits, but not along the streams due to neutral pH conditions, where pebbles are covered and cemented by Fe-oxides and hydroxides indicating that oxidation of pyrite has taken place especially at times of low water load. It follows, then, that the pyrite-rich sediment load of streams fed by the waste of the Murgul deposit is currently a big threat to the aquatic life and environment and will continue to be so even after the closure of the deposit. In fact, the oxidation will be enhanced and acidity increased due to natural conditions, which necessitates strong remedial actions to be taken. Topics: Acids; Copper; Environmental Pollutants; Ferric Compounds; Hydrogen-Ion Concentration; Industrial Waste; Iron; Iron Compounds; Metals; Minerals; Mining; Silicon Dioxide; Sulfides; Turkey | 2016 |
Controls on the Fate and Speciation of Np(V) During Iron (Oxyhydr)oxide Crystallization.
The speciation and fate of neptunium as Np(V)O2(+) during the crystallization of ferrihydrite to hematite and goethite was explored in a range of systems. Adsorption of NpO2(+) to iron(III) (oxyhydr)oxide phases was reversible and, for ferrihydrite, occurred through the formation of mononuclear bidentate surface complexes. By contrast, chemical extractions and X-ray absorption spectroscopy (XAS) analyses showed the incorporation of Np(V) into the structure of hematite during its crystallization from ferrihydrite (pH 10.5). This occurred through direct replacement of octahedrally coordinated Fe(III) by Np(V) in neptunate-like coordination. Subsequent analyses on mixed goethite and hematite crystallization products (pH 9.5 and 11) showed that Np(V) was incorporated during crystallization. Conversely, there was limited evidence for Np(V) incorporation during goethite crystallization at the extreme pH of 13.3. This is likely due to the formation of a Np(V) hydroxide precipitate preventing incorporation into the goethite particles. Overall these data highlight the complex behavior of Np(V) during the crystallization of iron(III) (oxyhydr)oxides, and demonstrate clear evidence for neptunium incorporation into environmentally important mineral phases. This extends our knowledge of the range of geochemical conditions under which there is potential for long-term immobilization of radiotoxic Np in natural and engineered environments. Topics: Adsorption; Crystallization; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Microscopy, Electron, Transmission; Minerals; Neptunium; Radioactive Waste; Temperature; X-Ray Absorption Spectroscopy; X-Ray Diffraction | 2016 |
Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment.
Many physical and chemical processes control the extent of Fe(III) oxyhydroxide reduction by dissimilatory Fe(III)-reducing bacteria. The surface precipitation of secondary Fe minerals on Fe(III) oxyhydroxides limits the extent of microbial Fe(III) reduction, but this phenomenon has not yet been observed in nature. This paper reports the observation of secondary Fe-mineral (goethite) encrustation on ferrihydrite surface within freshwater sediment up to 10 cm deep. The sediment surface was characterized by the predominance of ferrihydrites with biogenic stalks and sheaths. An Fe(II)-oxidizing bacterium (Gallionellaceae) was detected by 16S rRNA gene analysis at sediment depths of 1 and 2 cm. Fe(2+) concentration in the sediment pore water was relatively higher at 2-4 cm depths. The 16S rRNA genes affiliated with dissimilatory Fe(III)-reducing bacteria were detected at 1, 2, and 4 cm depths. The results of the Fe K-edge extended X-ray absorption fine structure (EXAFS) analysis suggested the presence of goethite and siderite at depths below 3 cm. However, the change in the Fe-mineral composition was restricted to sediment depths between 3 and 4 cm, despite the presence of abundant ferrihydrite at depths below 4 cm. An increase in CH4 concentration was observed at deeper than 6 cm. Stable isotopic analysis of CH4 in the pore water indicated that acetoclastic CH4 occurred at depths below 7 cm. Transmission electron microscope observations suggested the presence of goethite and siderite on stalks and sheaths at depths below 3 cm. Results from conversion electron yield EXAFS analysis suggested that goethite dominated at 10 cm depth, thereby indicating that ferrihydrite was encrusted by goethite at this depth. Moreover, the incomplete reduction of ferrihydrite below depths of 4 cm was not due to the lack of organic carbon, but was possibly due to the surface encrustation of goethite on ferrihydrite. Topics: Archaea; Bacteria; Cluster Analysis; DNA, Bacterial; DNA, Ribosomal; Ferric Compounds; Fresh Water; Geologic Sediments; Iron Compounds; Minerals; Oxidation-Reduction; Phylogeny; RNA, Ribosomal, 16S; Sequence Analysis, DNA; X-Ray Absorption Spectroscopy | 2016 |
Orenia metallireducens sp. nov. Strain Z6, a Novel Metal-Reducing Member of the Phylum Firmicutes from the Deep Subsurface.
A novel halophilic and metal-reducing bacterium, Orenia metallireducens strain Z6, was isolated from briny groundwater extracted from a 2.02 km-deep borehole in the Illinois Basin, IL. This organism shared 96% 16S rRNA gene similarity with Orenia marismortui but demonstrated physiological properties previously unknown for this genus. In addition to exhibiting a fermentative metabolism typical of the genus Orenia, strain Z6 reduces various metal oxides [Fe(III), Mn(IV), Co(III), and Cr(VI)], using H. A novel iron-reducing species, Orenia metallireducens sp. nov., strain Z6, was isolated from groundwater collected from a geological formation located 2.02 km below land surface in the Illinois Basin, USA. Phylogenetic, physiologic, and genomic analyses of strain Z6 found it to have unique properties for iron reducers, including (i) active microbial iron-reducing capacity under broad ranges of temperatures (20 to 60°C), pHs (6 to 9.6), and salinities (0.4 to 3.5 M NaCl), (ii) lack of c-type cytochromes typically affiliated with iron reduction in Geobacter and Shewanella species, and (iii) being the only member of the Halanaerobiales capable of reducing crystalline goethite and hematite. This study expands the scope of phylogenetic affiliations, metabolic capacities, and catalytic mechanisms for iron-reducing microbes. Topics: Bacterial Typing Techniques; DNA, Bacterial; DNA, Ribosomal; Ferric Compounds; Firmicutes; Genes, rRNA; Genome, Bacterial; Geobacter; Geologic Sediments; Iron Compounds; Metals; Minerals; Oxidation-Reduction; Phylogeny; RNA, Ribosomal, 16S; Shewanella | 2016 |
Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite.
Thiocyanate (SCN(-)) is a toxic contaminant produced by industrial processes such as gold ore cyanidation and coal coking. The potential for remediation by adsorption of SCN(-) on ferrihydrite, the influence of sulfate (SO4(2-)) on SCN(-) adsorption, and the fate of adsorbed SCN(-) during ferrihydrite aging were studied using macroscopic techniques complemented with attenuated total reflectance-Fourier transform infrared analysis (ATR-FTIR), X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). Results showed that adsorption of SCN(-) was strongly affected by the concentration of electrolyte (NaNO3) and pH, with decreases in concentration of NaNO3 and pH leading to increased SCN(-) adsorption. The adsorption isotherms can be described by the Langmuir model. While at lower concentrations (0.52-1.04 mM), the presence of SO4(2-) had little impact on SCN(-) adsorption, at a higher concentration (2.08 mM), SCN(-) adsorption was significantly inhibited. ATR-FTIR data confirmed that SCN(-) was bound as an outer-sphere complex on ferrihydrite, and this mechanism was not influenced by changes in pH or electrolyte concentration. XRD data showed that ferrihydrite transformed to a mixture of hematite and goethite at 75 °C and pH 5 in the presence and absence of SCN(-). Partitioning data revealed that during ferrihydrite transformation, all adsorbed SCN(-) was released into solution. Topics: Adsorption; Environmental Pollutants; Environmental Restoration and Remediation; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Microscopy, Electron, Transmission; Minerals; Models, Chemical; Nitrates; Spectroscopy, Fourier Transform Infrared; Sulfates; Thiocyanates; X-Ray Diffraction | 2015 |
Size- and composition-dependent toxicity of synthetic and soil-derived Fe oxide colloids for the nematode Caenorhabditis elegans.
Colloidal iron oxides (FeOx) are increasingly released to the environment due to their use in environmental remediation and biomedical applications, potentially harming living organisms. Size and composition could affect the bioavailability and toxicity of such colloids. Therefore, we investigated the toxicity of selected FeOx with variable aggregate size and variably composed FeOx-associated organic matter (OM) toward the nematode Caenorhabditis elegans. Ferrihydrite colloids containing citrate were taken up by C. elegans with the food and accumulated inside their body. The toxicity of ferrihydrite, goethite, and akaganeite was dependent on aggregate size and specific surface area, with EC50 values for reproduction ranging from 4 to 29 mg Fe L(-1). Experiments with mutant strains lacking mitochondrial superoxide dismutase (sod-2) showed oxidative stress for two FeOx and Fe(3+)-ions, however, revealed that it was not the predominant mechanism of toxicity. The OM composition determined the toxicity of mixed OM-FeOx phases on C. elegans. FeOx associated with humic acids or citrate were less toxic than OM-free FeOx. In contrast, soil-derived ferrihydrite, containing proteins and polysaccharides from mobile OM, was even more toxic than OM-free Fh of similar aggregate size. Consequently, the careful choice of the type of FeOx and the type of associated OM may help in reducing the ecological risks if actively applied to the subsurface. Topics: Animals; Caenorhabditis elegans; Colloids; Environment; Ferric Compounds; Iron; Iron Compounds; Minerals; Particle Size; Soil; Soil Pollutants; Toxicity Tests | 2015 |
Stable isotopes and iron oxide mineral products as markers of chemodenitrification.
When oxygen is limiting in soils and sediments, microorganisms utilize nitrate (NO3-) in respiration--through the process of denitrification--leading to the production of dinitrogen (N2) gas and trace amounts of nitrous (N2O) and nitric (NO) oxides. A chemical pathway involving reaction of ferrous iron (Fe2+) with nitrite (NO2-), an intermediate in the denitrification pathway, can also result in production of N2O. We examine the chemical reduction of NO2- by Fe(II)--chemodenitrification--in anoxic batch incubations at neutral pH. Aqueous Fe2+ and NO2- reacted rapidly, producing N2O and generating Fe(III) (hydr)oxide mineral products. Lepidocrotite and goethite, identified by synchrotron X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, were produced from initially aqueous reactants, with two-line ferrihydrite increasing in abundance later in the reaction sequence. Based on the similarity of apparent rate constants with different mineral catalysts, we propose that the chemodenitrification rate is insensitive to the type of Fe(III) (hydr)oxide. With stable isotope measurements, we reveal a narrow range of isotopic fractionation during NO2- reduction to N2O. The location of N isotopes in the linear N2O molecule, known as site preference, was also constrained to a signature range. The coexistence of Fe(III) (hydr)oxide, characteristic 15N and 18O fractionation, and N2O site preference may be used in combination to qualitatively distinguish between abiotic and biogenically emitted N2O--a finding important for determining N2O sources in natural systems. Topics: Chemical Fractionation; Denitrification; Ferric Compounds; Ferrous Compounds; Iron Compounds; Isotope Labeling; Minerals; Nitrites; Nitrogen Isotopes; Nitrous Oxide; Oxidation-Reduction; X-Ray Diffraction | 2015 |
Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.
A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder. Topics: Desulfovibrio; Ferric Compounds; Fresh Water; Gases; Geologic Sediments; Iron; Iron Compounds; Minerals; Oxidation-Reduction; Oxides; Oxygen Consumption; RNA, Ribosomal, 16S; Sulfates; Sulfides; Sulfur; Sulfur Compounds; Thermodynamics | 2015 |
Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite.
Aqueous ferrous iron (Fe(II)) accelerates the transformation of ferrihydrite into secondary, more crystalline minerals however the factors controlling the rate and, indeed, the underlying mechanism of this transformation process remain unclear. Here, we present the first detailed study of the kinetics of the Fe(II)-accelerated transformation of ferrihydrite to goethite, via lepidocrocite, for a range of pH and Fe(II) concentrations and, from the results obtained, provide insight into the factors controlling the transformation rate and the processes responsible for transformation. A reaction scheme for the Fe(II)-accelerated secondary mineralization of ferrihydrite is developed in which an Fe(II) atom attaches to the ferrihydrite surface where it is immediately oxidized to Fe(III) with the resultant electron transferred, sequentially, to other iron oxyhydroxide Fe(III) atoms before release to solution as Fe(II). This freshly precipitated Fe(III) forms the nuclei for the formation of secondary minerals and also facilitates the ongoing uptake of Fe(II) from solution by creation of fresh surface sites. The concentration of solid-associated Fe(II) and the rate of transport of Fe(II) to the oxyhydroxide surface appear to determine which particular secondary minerals form and their rates of formation. Lepidocrocite growth is enhanced at lower solid-associated Fe(II) concentrations while conditions leading to more rapid uptake of Fe(II) from solution lead to higher goethite growth rates. Topics: Crystallization; Electrons; Ferric Compounds; Iron; Iron Compounds; Kinetics; Microscopy, Electron, Transmission; Minerals; Models, Theoretical; Oxidation-Reduction; Solutions; Thermodynamics; Water | 2014 |
Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.
Reductive dechlorination of chlorinated ethenes is inhibited by acidification and by the presence of Fe (III) as a competitive electron acceptor. Synergism between both factors on dechlorination is predicted as reductive dissolution of Fe (III) minerals is facilitated by acidification. This study was set-up to assess this synergism for two common aquifer Fe (III) minerals, goethite and ferrihydrite. Anaerobic microbial dechlorination of trichloroethylene (TCE) by KB-1 culture and formate as electron donor was investigated in anaerobic batch containers at different solution pH values (6.2-7.2) in sand coated with these Fe minerals and a sand only as control. In the absence of Fe, lowering substrate pH from 7.2 to 6.2 increased the time for 90% TCE degradation from 14±1d to 42±4d. At pH 7.2, goethite did not affect TCE degradation time while ferrihydrite increased the degradation time to 19±1d compared to the no Fe control. At pH 6.2, 90% degradation was at 78±1 (ferrihydrite) or 131±1d (goethite). Ferrous iron production in ferrihydrite treatment increased between pH 7.2 and 6.5 but decreased by further lowering pH to 6.2, likely due to reduced microbial activity. This study confirms that TCE is increasingly inhibited by the combined effect of acidification and bioavailable Fe (III), however no evidence was found for synergistic inhibition since Fe reduction did not increase as pH decreases. To the best of our knowledge, this is the first study where effect of pH and Fe (III) reduction on TCE was simultaneously tested. Acid Fe-rich aquifers need sufficient buffering and alkalinity to ensure swift degradation of chlorinated ethenes. Topics: Bacteria, Anaerobic; Biodegradation, Environmental; Ferric Compounds; Halogenation; Hydrogen-Ion Concentration; Iron Compounds; Minerals; Oxidation-Reduction; Trichloroethylene; Water Microbiology; Water Pollutants, Chemical | 2014 |
Reduction of U(VI) by Fe(II) during the Fe(II)-accelerated transformation of ferrihydrite.
X-ray absorption spectroscopy has been used to study the reduction of adsorbed U(VI) during the Fe(II)-accelerated transformation of ferrihydrite to goethite. The fate of U(VI) was examined across a variety of pH values and Fe(II) concentrations, with results suggesting that, in all cases, it was reduced over the course of the Fe(III) phase transformation to a U(V) species incorporated in goethite. A positive correlation between U(VI) reduction and ferrihydrite transformation rate constants implies that U(VI) reduction was driven by the production of goethite under the conditions used in these studies. This interpretation was supported by additional experimental evidence that demonstrated the (fast) reduction of U(VI) to U(V) by Fe(II) in the presence of goethite only. Theoretical redox potential calculations clearly indicate that the reduction of U(VI) by Fe(II) in the presence of goethite is thermodynamically favorable. In contrast, reduction of U(VI) by Fe(II) in the presence of ferrihydrite is largely thermodynamically unfavorable within the range of conditions examined in this study. Topics: Adsorption; Ferric Compounds; Iron; Iron Compounds; Minerals; Oxidation-Reduction; Thermodynamics; Uranium; X-Ray Absorption Spectroscopy | 2014 |
Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation.
Uranium retention processes (adsorption, precipitation, and incorporation into host minerals) exert strong controls on U mobility in the environment, and understanding U retention is therefore crucial for predicting the migration of U within surface and groundwater. Uranium can be incorporated into Fe (hydr)oxides during Fe(ii)-induced transformation of ferrihydrite to goethite. However, ferrihydrite seldom exists as a pure phase within soils or sediments, and structural impurities such as Al alter its reactivity. The presence of Al in ferrihydrite, for example, decreases the rate of transformation to goethite, and thus may impact the retention pathway, or extent of retention, of U. Here, we investigate the extent and pathways of U(vi) retention on Al-ferrihydrite during Fe(ii)-induced transformation. Ferrihydrite containing 0%, 1%, 5%, 10%, and 20% Al was reacted with 10 μM U and 300 μM Fe(ii) in the presence of 0 mM and 4 mM Ca(2+) and 3.8 mM carbonate at pH 7.0. Solid reaction products were characterized using U L3-edge EXAFS spectroscopy to differentiate between adsorbed U and U incorporated into the goethite lattice. Uranium incorporation into Al-ferrihydrite declined from ∼70% of solid-phase U at 0% and 1% Al to ∼30% of solid phase U at 20% Al content. The decrease in U incorporation with increasing Al concentration was due to two main factors: (1) decreased transformation of ferrihydrite to goethite; and, (2) a decrease of the goethite lattice with increasing Al, making the lattice less compatible with large U atoms. However, uranium incorporation can occur even with an Al-substituted ferrihydrite precursor in the presence or absence of Ca(2+). The process of U incorporation into Al-goethite may therefore be a potential long-term sink of U in subsurface environments where Al-substituted iron oxides are common, albeit at lower levels of incorporation with increasing Al content. Topics: Adsorption; Aluminum; Ferric Compounds; Groundwater; Iron; Iron Compounds; Minerals; Powder Diffraction; Uranium; Water Pollutants, Radioactive; X-Ray Absorption Spectroscopy; X-Ray Diffraction | 2014 |
Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation.
Sorption to iron (Fe) minerals determines the fate of the toxic metalloid arsenic (As) in many subsurface environments. Recently, thiolated As species have been shown to dominate aqueous As speciation under a range of environmentally relevant conditions, thus highlighting the need for a quantitative understanding of their sorption behavior. We conducted batch experiments to measure the time-dependent sorption of two S-substituted arsenate species, mono- and tetrathioarsenate, and compared it to the sorption of arsenite and arsenate, in suspensions containing 2-line ferrihydrite, goethite, mackinawite, or pyrite. All four As species strongly sorbed to ferrihydrite. For the other sorbents, binding of the thiolated As species was generally lower compared to arsenate and arsenite, with the exception of the near instantaneous and complete sorption of monothioarsenate to pyrite. Analysis of the X-ray absorption spectroscopy (XAS) spectra of sorbed complexes implied that monothioarsenate binds to Fe oxides as a monodentate, inner-sphere complex. In the presence of Fe sulfides, mono- and tetrathioarsenate were both unstable and partially reduced to arsenite. Adsorption of the thiolated As species to the Fe sulfide minerals also caused the substitution of surface sulfur (S) atoms by As and the formation of As-Fe bonds. Topics: Adsorption; Arsenates; Arsenites; Ferric Compounds; Ferrous Compounds; Iron; Iron Compounds; Kinetics; Minerals; Models, Chemical; Sulfides; X-Ray Absorption Spectroscopy | 2013 |
Effects of blending of desalinated and conventionally treated surface water on iron corrosion and its release from corroding surfaces and pre-existing scales.
This study examined effects of blending desalinated water with conventionally treated surface water on iron corrosion and release from corroding metal surfaces and pre-existing scales exposed to waters having varying fractions of desalinated water, alkalinities, pH values and orthophosphate levels. The presence of desalinated water resulted in markedly decreased 0.45 μm-filtered soluble iron concentrations. However, higher fractions of desalinated water in the blends were also associated with more fragile corroding surfaces, lower retention of iron oxidation products and release of larger iron particles in the bulk water. SEM, XRD and XANES data showed that in surface water, a dense layer of amorphous ferrihydrite phase predominated in the corrosion products. More crystalline surface phases developed in the presence of desalinated water. These solid phases transformed from goethite to lepidocrocite with increased fraction of desalinated water. These effects are likely to result from a combination of chemical parameters, notably variations of the concentrations of natural organic matter, calcium, chloride and sulfate when desalinated and conventionally treated waters are blended. Topics: Calcium; Chlorides; Corrosion; Ferric Compounds; Filtration; Iron; Iron Compounds; Microscopy, Electron, Scanning; Minerals; Oxidation-Reduction; Phosphates; Sulfates; Water Purification; X-Ray Diffraction | 2013 |
Behavior of antimony(V) during the transformation of ferrihydrite and its environmental implications.
In this study, we investigated the behavior of Sb(V) during the transformation of poorly crystalline Fe(III) oxyhydroxides (two-line ferrihydrite) with various Sb/Fe molar ratios at pH 6.0. Both XRD and Fe EXAFS analyses confirmed that goethite and hematite are the primary transformation products of the ferrihydrite in the presence of Sb(V). The crystallization kinetics showed that the transformation rate with Sb(V) was approximately the same as that of the control (without Sb(V)), which indicates that the presence of Sb(V) does not influence the transformation rate to a noticeable extent. Throughout the transformation, Sb(V) dominantly partitioned in the solid phase and no desorption of Sb(V) was observed. Furthermore, Sb EXAFS analyses suggested that Sb(V) in the solid phase is structurally incorporated into crystalline goethite and/or hematite generated by the ferrihydrite transformation. Hence, Sb(V) transfers into the thermodynamically stable solids from the metastable ferrihydrite with aging, indicating a rigid immobilization of Sb(V). These findings are valuable for making predictions on the long-term fate of Sb associated with ferrihydrite in natural environments. Topics: Antimony; Crystallization; Environmental Monitoring; Environmental Pollutants; Ferric Compounds; Iron Compounds; Kinetics; Minerals; Thermodynamics; X-Ray Absorption Spectroscopy | 2013 |
Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
Organic matter (OM) is present in most terrestrial environments and is often found coprecipitated with ferrihydrite (Fh). Sorption or coprecipitation of OM with Fe oxides has been proposed to be an important mechanism for long-term C preservation. However, little is known about the impact of coprecipitated OM on reductive dissolution and transformation of Fe(III) (oxyhydr)oxides. Thus, we study the effect of humic acid (HA) coprecipitation on Fh reduction and secondary mineral formation by the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens strain CN32. Despite similar crystal structure for all coprecipitates investigated, resembling 2-line Fh, the presence of coprecipitated HA resulted in lower specific surface areas. In terms of reactivity, coprecipitated HA resulted in slower Fh bioreduction rates at low C/Fe ratios (i.e., C/Fe ≤ 0.8), while high C/Fe ratios (i.e., C/Fe ≥ 1.8) enhanced the extent of bioreduction compared to pure Fh. The coprecipitated HA also altered the secondary Fe mineralization pathway by inhibiting goethite formation, reducing the amount of magnetite formation, and increasing the formation of a green rust-like phase. This study indicates that coprecipitated OM may influence the rates, pathway, and mineralogy of biogeochemical Fe cycling and anaerobic Fe respiration within soils. Topics: Chemical Precipitation; Ferric Compounds; Ferrosoferric Oxide; Humic Substances; Iron Compounds; Minerals; Oxidation-Reduction; Shewanella putrefaciens | 2013 |
Evaluation of different amendments to stabilize antimony in mining polluted soils.
Soil pollution with antimony is of increasing environmental concern worldwide. Measures for its control and to attenuate the risks posed to the ecosystem are required. In this study the application of several iron and aluminium oxides and oxyhydroxides as soil amendments was evaluated in order to assess their feasibility to stabilize Sb in mining polluted soils. Mine soils with different pollution levels were amended with either goethite, ferrihydrite or amorphous Al oxide at various ratios (0-10%). The effectiveness of such treatments was assessed by both batch and column leaching tests. The use of ferrihydrite or amorphous Al oxide proved to be highly effective to stabilize Sb. Immobilization levels of 100% were found when doses of 5% ferrihydrite or 10% amorphous Al oxide were applied, regardless of the soil Sb load. Column leaching studies also showed a high Sb leaching reduction (>75%) when soils were amended with 1% ferrihydrite or 5% amorphous Al oxide. Moreover, such treatments proved to simultaneously immobilize As and Pb in a great extent when soils were also polluted with such toxic elements. Topics: Antimony; Environmental Restoration and Remediation; Ferric Compounds; Iron; Iron Compounds; Minerals; Mining; Oxides; Soil; Soil Pollutants | 2013 |
Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump.
Arsenic-contaminated soils near historical As-rich mine waste in Jáchymov (Czech Rep.), resulting from the smelting and seepage of the mine waste pore water, were studied to examine As partitioning between solid phases and pore waters. Mineralogical and geochemical analyses showed that As is exclusively associated with unidentified amorphous Fe oxyhydroxides, poorly crystalline goethite and hematite as adsorbed and coprecipitated species (with up to 3.2 wt.% As). Adsorption of As by Fe oxyhydroxides is likely to be a major control on the migration of As in the soil pore water containing only up to 15 μg L(-1) As(V). The slight variations in the dissolved As(V) concentrations do not follow the total contents of As in the soil or adsorbed As, but appeared to be a function of pH-dependent sorption onto Fe oxyhydroxides. The geochemical modelling using PHREEQC-2 supported the efficiency of As(V) adsorption by Fe oxyhydroxides in the soil affected by As-rich waste solution seepage. It also suggested that active Fe oxyhydroxides has a strong attenuation capacity in soil that could effectively trap the aqueous As(V) from the unremitting waste seepage for the next approx. 11600 years. Topics: Adsorption; Arsenic; Chromatography, High Pressure Liquid; Chromatography, Ion Exchange; Czech Republic; Environmental Pollutants; Ferric Compounds; Groundwater; Iron Compounds; Microscopy, Electron, Scanning; Minerals; Mining; Models, Chemical; Soil; Spectrophotometry; Thermodynamics; Waste Products | 2012 |
Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature.
Under oxic aqueous conditions, two-line ferrihydrite gradually transforms to more thermodynamically stable and more crystalline phases, such as goethite and hematite. This temperature- and pH-dependent transformation can play an important role in the sequestration of metals and metalloids adsorbed onto ferrihydrite. A comprehensive assessment of the crystallization of two-line ferrihydrite with respect to temperature (25, 50, 75, and 100 °C) and pH (2, 7, and 10) as a function of reaction time (minutes to months) was conducted via batch experiments. Pure and transformed phases were characterized by X-ray diffraction (XRD), X-ray absorption near-edge spectroscopy (XANES), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The rate of transformation of two-line ferrihydrite to hematite increased with increasing temperature at all pHs studied and followed first-order reaction kinetics. XRD and XANES showed simultaneous formation of goethite and hematite at 50 and 75 °C at pH 10, with hematite being the dominant product at all pHs and temperatures. With extended reaction time, hematite increased while goethite decreased, and goethite reaches a minimum after 7 days. Observations suggest two-line ferrihydrite transforms to hematite via a two-stage crystallization process, with goethite being intermediary. The findings of this study can be used to estimate rates of crystallization of pure two-line ferrihydrite over the broad range of temperatures and pH found in nature. Topics: Adsorption; Ferric Compounds; Hydrogen-Ion Concentration; Hydroxides; Iron Compounds; Kinetics; Microscopy, Atomic Force; Microscopy, Electron, Scanning; Minerals; Surface Properties; Temperature; Time; X-Ray Absorption Spectroscopy; X-Ray Diffraction | 2011 |
Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(VI).
It has recently been reported that the Fe(II)-catalyzed crystallization of 2-line ferrihydrite to goethite and magnetite can result in the immobilization of uranium. Although it might be expected that interference of the crystallization process (for example, by the presence of silicate) would prevent uranium immobilization, this has not yet been demonstrated. Here we present results of an X-ray absorption spectroscopy study on the fate of hexavalent uranium (U(VI)) during the Fe(II)-catalyzed transformations of 2-line ferrihydrite and ferrihydrite coprecipitated with silicate (silicate-ferrihydrite). Two-line ferrihydrite transformed monotonically to goethite, whereas silicate-ferrihydrite transformed into a form similar to ferrihydrite synthesized in the absence of silicate. Modeling of U L(III)-edge EXAFS data indicated that both coprecipitated and adsorbed U(VI) were initially associated with ferrihydrite and silicate-ferrihydrite as a mononuclear bidentate surface complex. During the Fe(II)-catalyzed transformation process, U(VI) associated with 2-line ferrihydrite was reduced and partially incorporated into the newly formed goethite mineral structure, most likely as U(V), whereas U(VI) associated with silicate-ferrihydrite was not reduced and remained in a form similar to its initially adsorbed state. Uranium(VI) that was initially adsorbed to silicate-ferrihydrite did, however, become more resistant to reductive dissolution indicating at least a partial reduction in mobility. These results suggest that when the Fe(II)-catalyzed transformation of ferrihydrite-like iron oxyhydroxides is inhibited, at least under conditions similar to those used in these experiments, uranium reduction will not occur. Topics: Adsorption; Ferric Compounds; Ferrosoferric Oxide; Ferrous Compounds; Iron Compounds; Minerals; Oxidation-Reduction; Uranium | 2011 |
Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite.
The adsorption-desorption kinetics of arsenate on a Fe(III)-modified montmorillonite (Fe-M) was studied at different arsenate concentrations, pH and stirring rates. The synthesized solid was a porous sample with Fe(III) present as a mix of monomeric and polymeric Fe(III) species in the interlayer and on the external surface. Adsorption took place in a two-step mechanism, with an initial fast binding of arsenate to Fe(III) species at the external surface (half-lives of 1 min or shorter) followed by a slower binding to less accessible Fe(III) species in pores and the interlayer (half-lives of around 1 h). Desorption kinetics also reflected the presence of externally and internally adsorbed arsenate. At pH 6 the maximum adsorbed arsenate was 52 μmol/g, a value that is low as compared to adsorption on ferrihydrite (700 μmol/g) and goethite (192-220 μmol/g). However, since the Fe(III) content of Fe-M is much lower than that of ferrihydrite and goethite, Fe(III) species in Fe-M are more efficient in binding arsenate than in ferrihydrite or goethite (one As atom is attached every 8.95 iron atoms). This high binding efficiency indicates that Fe(III) species are well spread on montmorillonite, forming small oligomeric species or surface clusters containing just a few iron atoms. Topics: Adsorption; Algorithms; Arsenates; Bentonite; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Kinetics; Minerals; Porosity; Solubility; Surface Properties; X-Ray Diffraction | 2011 |
Impacts of Shewanella putrefaciens strain CN-32 cells and extracellular polymeric substances on the sorption of As(V) and As(III) on Fe(III)-(hydr)oxides.
We investigated the effects of Shewanella putrefaciens cells and extracellular polymeric substances on the sorption of As(III) and As(V) to goethite, ferrihydrite, and hematite at pH 7.0. Adsorption of As(III) and As(V) at solution concentrations between 0.001 and 20 μM decreased by 10 to 45% in the presence of 0.3 g L(-1) EPS, with As(III) being affected more strongly than As(V). Also, inactivated Shewanella cells induced desorption of As(V) from the Fe(III)-(hydr)oxide mineral surfaces. ATR-FTIR studies of ternary As(V)-Shewanella-hematite systems indicated As(V) desorption concurrent with attachment of bacterial cells at the hematite surface, and showed evidence of inner-sphere coordination of bacterial phosphate and carboxylate groups at hematite surface sites. Competition between As(V) and bacterial phosphate and carboxylate groups for Fe(III)-(oxyhydr)oxide surface sites is proposed as an important factor leading to increased solubility of As(V). The results from this study have implications for the solubility of As(V) in the soil rhizosphere and in geochemical systems undergoing microbially mediated reduction and indicate that the presence of sorbed oxyanions may affect Fe-reduction and biofilm development at mineral surfaces. Topics: Adsorption; Arsenates; Arsenites; Ferric Compounds; Iron Compounds; Minerals; Polysaccharides, Bacterial; Shewanella putrefaciens; Soil Pollutants; Spectroscopy, Fourier Transform Infrared; Surface Properties | 2011 |
Laboratory studies using naturally occurring "green rust" to aid metal mine water remediation.
Green rust, an Fe (II) and (III) oxyhydroxy salt, can alter the aqueous oxidation state, mobility and toxicity, of inorganic contaminants and thus could have applications in water treatment. This paper discusses a series of stirred, open batch experiments designed to evaluate green rust, and its oxidised equivalent in this context comparing it to a ferrihydrite/goethite 'ochre'. Natural green rust was added to different mine waters as either a wet, reduced material or a dry, partially oxidised material. Experiments showed that the addition of either form accelerated the removal of potentially harmful elements from solution. Within one hour Fe, Al and Cu were completely removed from mine waters with initial concentrations of 80, 70 and 8.5mg/L, respectively, and Zn was reduced from 60 to <5mg/L. These experiments show the potential of green rust in mine water treatment, especially as it is able to remove problematic elements such as Al and Zn. The material is effective even after being dried and mostly oxidised. Changes to the pH and ORP of the mine waters and surface catalysis are the suggested mechanisms of accelerated removal of contaminants. Topics: Aluminum; Clinical Laboratory Techniques; Copper; Ferric Compounds; Iron; Iron Compounds; Metals, Heavy; Minerals; Mining; Oxidation-Reduction; Water Pollutants, Chemical; Water Purification; Zinc | 2011 |
Effects of adsorbed arsenate on the rate of transformation of 2-line ferrihydrite at pH 10.
2-Line ferrihydrite, a form of iron in uranium mine tailings, is a dominant adsorbent for elements of concern (EOC), such as arsenic. As ferrihydrite is unstable under oxic conditions and can undergo dissolution and subsequent transformation to hematite and goethite over time, the impact of transformation on the long-term stability of EOC within tailings is of importance from an environmental standpoint. Here, studies were undertaken to assess the rate of 2-line ferrihydrite transformation at varying As/Fe ratios (0.500-0.010) to simulate tailings conditions at the Deilmann Tailings Management Facility of Cameco Corporation, Canada. Kinetics were evaluated under relevant physical (~1 °C) and chemical conditions (pH ~10). As the As/Fe ratio increased from 0.010 to 0.018, the rate of ferrihydrite transformation decreased by 2 orders of magnitude. No transformation of ferrihydrite was observed at higher As/Fe ratios (0.050, 0.100, and 0.500). Arsenic was found to retard ferrihydrite dissolution and transformation as well as goethite formation. Topics: Adsorption; Arsenates; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Mass Spectrometry; Minerals; Mining; Saskatchewan; Spectrum Analysis, Raman; Temperature; Time Factors; Uranium; X-Ray Diffraction | 2011 |
Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32.
The kinetics of As(V) reduction by Shewanella putrefaciens strain CN-32 was investigated in suspensions of 0.2, 2, or 20 g L(-1) ferrihydrite, goethite, or boehmite at low As (10 μM) and lactate (25 μM) concentrations. Experimental data were compared with model predictions based on independently determined sorption isotherms and rates of As(V) desorption, As(III) adsorption, and microbial reduction of dissolved As(V), respectively. The low lactate concentration was chosen to prevent significant Fe(III) reduction, but still allowing complete As(V) reduction. Reduction of dissolved As(V) followed first-order kinetics with a 3 h half-life of As(V). Addition of mineral sorbents resulted in pronounced decreases in reduction rates (32-1540 h As(V) half-life). The magnitude of this effect increased with increasing sorbent concentration and sorption capacity (goethite < boehmite < ferrihydrite). The model consistently underestimated the concentrations of dissolved As(V) and the rates of microbial As(V) reduction after addition of S. putrefaciens (∼5 × 10(9) cells mL(-1)), suggesting that attachment of S. putrefaciens cells to oxide mineral surfaces promoted As(V) desorption and thereby facilitated As(V) reduction. The interplay between As(V) sorption to mineral surfaces and bacterially induced desorption may thus be critical in controlling the kinetics of As reduction and release in reducing soils and sediments. Topics: Adsorption; Aluminum Hydroxide; Aluminum Oxide; Arsenates; Environmental Pollutants; Ferric Compounds; Iron Compounds; Kinetics; Minerals; Oxidation-Reduction; Shewanella putrefaciens | 2011 |
Mobility of Cd and Cu in formulated sediments coated with iron hydroxides and/or humic acids: a DGT and DGT-PROFS modeling approach.
The diffusive gradients technique in thin films (DGT) was used to investigate the kinetic resupply of Cd and Cu to pore water from the solid phase. For the sake of simplification, experiments were performed using formulated sediments that differed in the presence or absence of humic acids (HA) and/or of iron hydroxides (i.e., goethite and ferrihydrite). The effects of the time after the contamination of the solid phase (aging effect) on formulated sediments that were coated with goethite and HA and spiked with Cd were also evaluated. Kinetic DGT results were interpreted using the newly developed, multi-compartmental model DGT-PROFS. Due to Cu humate formation, the addition of HA slightly increased the Cu concentration in the pore water independent of the effect of the iron hydroxide coating on the formulated sediments and slightly decreased that of Cd. The impact of 8-190d of aging resulted in a significant decrease in the Cd concentration of the pore water over an increasing incubation time. Modeling our results with DGT-PROFS led to the following conclusions concerning the impact of HA and iron hydroxides on Cd and Cu availability. First, in the presence of HA and absence of iron hydroxides, Cd is associated mainly with weak sites, while Cu is bound to strong sites. Similarly, in the presence of both iron hydroxides and HA, Cu appeared to be more heavily associated with the strong sites than did Cd. When the incubation time increased from 8 to 190d, a proportion of Cd initially adsorbed onto weak sites transferred to the strong sites, suggesting that the adsorption of Cd on sediments is controlled partially by slow kinetic processes. Topics: Cadmium; Copper; Environmental Monitoring; Ferric Compounds; Geologic Sediments; Humic Substances; Iron Compounds; Kinetics; Minerals; Models, Chemical; Thermodynamics; Time Factors | 2011 |
Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing.
In anoxic rice field soil, ferric iron reduction is one of the most important terminal electron accepting processes, yet little is known about the identity of iron-reducing microorganisms. Here, we identified acetate-metabolizing bacteria by RNA-based stable isotope probing in the presence of iron(III) oxides as electron acceptors. After reduction of endogenous iron(III) for 21 days, isotope probing with (13)C-labeled acetate (2 mM) and added ferric iron oxides (ferrihydrite or goethite) was performed in rice field soil slurries for 48 and 72 h. Ferrihydrite reduction coincided with a strong suppression of methanogenesis (77%). Extracted RNA from each treatment was density resolved by isopycnic centrifugation, and analyzed by terminal restriction fragment length polymorphism, followed by cloning and sequencing of 16S rRNA of bacterial and archaeal populations. In heavy, isotopically labeled RNAs of the ferrihydrite treatment, predominant (13)C-assimilating populations were identified as Geobacter spp. (approximately 85% of all clones). In the goethite treatment, iron(II) formation was not detectable. However, Geobacter spp. (approximately 30%), the delta-proteobacterial Anaeromyxobacter spp. (approximately 30%), and novel beta-Proteobacteria were predominant in heavy rRNA fractions indicating that (13)C-acetate had been assimilated in the presence of goethite, whereas none were detected in the control heavy RNA. For the first time, active acetate-oxidizing iron(III)-reducing bacteria, including novel hitherto unrecognized populations, were identified as a functional guild in anoxic paddy soil. Topics: Acetates; Archaea; Bacteria; Carbon Isotopes; Deltaproteobacteria; DNA, Archaeal; Ferric Compounds; Geobacter; Iron Compounds; Italy; Minerals; Molecular Sequence Data; Oryza; Phylogeny; RNA, Bacterial; RNA, Ribosomal, 16S; Soil Microbiology | 2010 |
Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals.
Pure-culture studies have shown that dissimilatory metal-reducing bacteria are able to utilize iron-oxide nanoparticles as electron conduits for reducing distant terminal acceptors; however, the ecological relevance of such energy metabolism is poorly understood. Here, soil microbial communities were grown in electrochemical cells with acetate as the electron donor and electrodes (poised at 0.2 V versus Ag/AgCl) as the electron acceptors in the presence and absence of iron-oxide nanoparticles, and respiratory current generation and community structures were analysed. Irrespective of the iron-oxide species (hematite, magnetite or ferrihydrite), the supplementation with iron-oxide minerals resulted in large increases (over 30-fold) in current, while only a moderate increase (∼10-fold) was observed in the presence of soluble ferric/ferrous irons. During the current generation, insulative ferrihydrite was transformed into semiconductive goethite. Clone-library analyses of 16S rRNA gene fragments PCR-amplified from the soil microbial communities revealed that iron-oxide supplementation facilitated the occurrence of Geobacter species affiliated with subsurface clades 1 and 2. We suggest that subsurface-clade Geobacter species preferentially thrive in soil by utilizing (semi)conductive iron oxides for their respiration. Topics: Ferric Compounds; Ferrosoferric Oxide; Genes, rRNA; Geobacter; Iron Compounds; Minerals; Molecular Sequence Data; Oxidation-Reduction; Phylogeny; RNA, Bacterial; RNA, Ribosomal, 16S; Soil; Soil Microbiology | 2010 |
Interactions of EDDS with Fe- and Al-(hydr)oxides.
The efficiency of EDDS ([S,S]-ethylenediaminedisuccinate) in metal (phyto) extraction has been discussed in many recent papers. This study demonstrated that the presence of Fe- and Al-(hydr)oxides in soils influences the speciation of EDDS and thus can decrease the extraction of the targeted metallic contaminants (e.g., Pb, Cu, Zn). Above all, amorphous and poorly crystalline oxides (e.g., ferrihydrite) seem to significantly control dissolved Fe and Al concentrations in soils in the presence of metal-EDDS complexes and especially uncomplexed EDDS. Metals released from these minerals compete for the chelating agent and the extraction efficiency of the targeted metals is lowered. The formation of stable Cu-EDDS complexes, which are preferentially formed in soils with high Cu concentrations, results into a lower dissolution of ferrihydrite and goethite compared to free EDDS and Al-EDDS. Information about the contents of amorphous and poorly crystalline oxides in the treated soils would thus be beneficial for choosing efficient EDDS dosages. Topics: Aluminum Hydroxide; Chelating Agents; Ethylenediamines; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Minerals; Soil; Succinates; X-Ray Diffraction | 2009 |
Rates and extent of reduction of Fe(III) compounds and O2 by humic substances.
Humic substances (HS) can be reduced by microorganisms and oxidized by electron acceptors such as Fe(III) or O2. However, redox reactions between HS and highly crystalline Fe(III) minerals and O2 have not yet been quantified. We therefore determined the rates and extent of goethite and hematite reduction by HS in comparison to those of dissolved and poorly crystalline Fe(III) compounds and O2. Although nonreduced HS transferred significant amounts of electrons only to dissolved Fe(III) citrate and ferrihydrite, reduced HS additionally reduced goethite and hematite. The extent of reduction depended on the redox potentials of the Fe(III) compounds. Fewer electrons were transferred from HS to O2 than to Fe(III) despite the more positive redox potential of the O2/H2O redox couple. Reoxidation of reduced HS by O2 took place within minutes and yielded reoxidized HS that were still more reduced than nonreduced HS, indicating that some reduced moieties in HS are protected from reoxidation by O2. Our data suggests (i) reduction of crystalline Fe(III) minerals by reduced HS has to be considered in the environmental electron transfer network, (ii) exposure of reduced HS to O2 does not reoxidize HS completely within short time frames, and therefore, (iii) HS electron shuttling to Fe(III) can occur even in the presence of O2. Topics: Citrates; Crystallization; Electrons; Environmental Monitoring; Ferric Compounds; Humic Substances; Iron Compounds; Kinetics; Minerals; Oxidation-Reduction; Oxygen | 2009 |
Reactivity of ferric oxides toward H2S at low pH.
Goethite (gt), 2-line (21fh), 6-line ferrihydrite (61fh), and schwertmannite (shm) were reacted with H2S under steady-state conditions at pH 2.5-5 using a novel setup that consisted of an electrochemical sulfide generator transporting H2S into a suspension of oxides in a fluidized bed-reactor. The reactants were stoichiometrically converted into Fe2+ and So. Sulfate significantly inhibited the rates. Surface area normalized rates increased with pH. They depended on the mineral type following the order gt > 21fh > 61fh, contrasting previous observations at circumneutral pH with an inverse order. The rate of shm dissolution was highest probably due to direct reduction of dissolved ferric iron by H2S. A linear relationship between the observed rate and the surface species of H2S was derived from a surface complexation approach that allowed for the estimation of intrinsic rate constants kintr for the various oxides (38 min(-1), 1.4 min(-1), 0.29 min(-1) for gt, 21fh, and 61fh, respectively). kint decreased with increasing deltaGf for the reactions and seems to depend on the reduction potential of the solution. From this observation we derived the hypothesis that kint is determined by the flat-band potential of the mineral/solute interface at low pH while being affected by surface interactions at higher pH. Topics: Ferric Compounds; Hydrogen Sulfide; Hydrogen-Ion Concentration; Iron Compounds; Minerals; Oxidation-Reduction | 2007 |
Sorption of 1-hydroxy-2-naphthoic acid to goethite, lepidocrocite and ferrihydrite: batch experiments and infrared study.
The adsorption of naphthoic acids to iron oxides and hydroxides influences strongly their mobility in soils and sediments. Sorption of 1-hydroxy-2-naphthoic acid (HNA) to three iron oxides was examined over a wide range of conditions (pH, ionic strength, sorbate and sorbent concentrations). In the examination of HNA sorption, Tempkin model was performed to fit sorption data of HNA onto all iron oxides. The adsorption in the Henry law range increases in the order: goethite Topics: Adsorption; Environmental Monitoring; Ferric Compounds; Iron Compounds; Minerals; Models, Chemical; Naphthols; Soil Pollutants; Spectroscopy, Fourier Transform Infrared; Surface Properties | 2007 |
Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.
Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest that in situ redox cycling may serve as an effective method for Topics: Ferric Compounds; Geologic Sediments; Hydrochloric Acid; Iron; Iron Compounds; Metals, Heavy; Minerals; Oxidation-Reduction; Soil Microbiology; Solubility; Zinc | 2006 |
Enhanced recovery of arsenite sorbed onto synthetic oxides by L-ascorbic acid addition to phosphate solution: calibrating a sequential leaching method for the speciation analysis of arsenic in natural samples.
Stripping voltammetry capable of detecting 0.3microg/L arsenate and arsenite was applied for speciation analysis of arsenic sorbed onto synthetic ferrihydrite, goethite at As/Fe ratio of approximately 1.5mg/g with or without birnessite after sequential extraction using 1M phosphate (24 and 16 h) and 1.2M HCl (1h). Precautions to avoid oxygen were undertaken by extracting under anaerobic conditions and by adding 0.1M l-ascorbic acid to 1M NaH(2)PO(4) (pH 5). Addition of l-ascorbic acid did not reduce As(V) to As(III). The recovery rate for As(III) using l-ascorbic acid for extraction (pH 5) but not for adsorption was 81% and 74% of total sorbed As, and was 99% and 97% of extracted As for ferrihydrite and goethite, respectively. Birnessite oxidized most As(III) during the adsorption procedure. l-ascorbic acid used both in adsorption and extraction procedures improved the recovery of As(III) to 79-94% for ferrihydrite-birnessite and 57-94% for goethite-birnessite systems with Fe/Mn ratios of 7, 70, 140 and 280g/g. Topics: Adsorption; Anaerobiosis; Arsenic; Ascorbic Acid; Calibration; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Manganese Compounds; Minerals; Phosphates; Water Pollutants, Chemical; Water Purification | 2006 |
Sorption of Am(III) onto 6-line-ferrihydrite and its alteration products: investigations by EXAFS.
For the long-term performance assessment of nuclear waste repositories, knowledge about the interactions of actinide ions with mineral surfaces such as iron oxides is imperative. The mobility of released radionuclides is strongly dependent on the sorption/desorption processes at these surfaces and on their incorporation into the mineral structure. In this study the interaction of Am(III) with 6-line-ferrihydrite (6LFh) was investigated by EXAFS spectroscopy. At low pH values (pH 5.5), as well at higher pH values (pH 8.0), Am(III) sorbs as a bidentate corner-sharing species onto the surface. Investigations of the interaction of Am(III) with Fh coated silica colloids prove the sorption onto the iron coating and not onto the silica substrate. Hence, the presence of Fh, even as sediment coating, is the dominant sorption surface. Upon heating, Fh is transformed into goethite and hematite as shown by TEM and IR measurements. The results of the fit to the EXAFS data indicate the release of sorbed Am(III) at pH 5.5 during the transformation and likely a partial incorporation of Am into the Fh transformation products at pH 8.0. Topics: Americium; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Minerals; Models, Chemical; Radioactive Waste; Spectrophotometry, Infrared; Spectrum Analysis | 2006 |
Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (Hydr)oxides.
Uranium mobility in the environment is partially controlled by its oxidation state, where it exists as either U(VI) or U(IV). In aerobic environments, uranium is generally found in the hexavalent form, is quite soluble, and readily forms complexes with carbonate and calcium. Under anaerobic conditions, common metal respiring bacteria can reduce soluble U(VI) species to sparingly soluble UO2 (uraninite); stimulation of these bacteria, in fact, is being explored as an in situ uranium remediation technique. However, the stability of biologically precipitated uraninite within soils and sediments is not well characterized. Here we demonstrate that uraninite oxidation by Fe(III) (hydr)oxides is thermodynamically favorable under limited geochemical conditions. Our analysis reveals that goethite and hematite have a limited capacity to oxidize UO2(biogenic) while ferrihydrite can lead to UO2(biogenic) oxidation. The extent of UO2(biogenic) oxidation by ferrihydrite increases with increasing bicarbonate and calcium concentration, but decreases with elevated Fe(II)(aq) and U(VI)(aq) concentrations. Thus, our results demonstrate that the oxidation of UO2(biogenic) by Fe(III) (hydr)oxides may transpire under mildly reducing conditions when ferrihydrite is present. Topics: Bacteria; Carbonates; Ferric Compounds; Hydrogen-Ion Concentration; Iron Compounds; Minerals; Oxidation-Reduction; Thermodynamics; Uranium Compounds | 2006 |
Methyl arsenic adsorption and desorption behavior on iron oxides.
In virtually all Earth surface environments, methylated forms of arsenic can be found. Because of the widespread distribution and toxicity of methyl-arsenic compounds, their adsorption by soil minerals is of considerable interest. The objective of this study was to compare the adsorption and desorption behavior of methylarsonic acid (MMAsV), methylarsonous acid (MMAsIII), dimethylarsinic acid (DMAsV), dimethylarsinous acid (DMAsIII), arsenate (iAsV), and arsenite (iAsIII) on iron oxide minerals (goethite and 2-line ferrihydrite) by means of adsorption isotherms, adsorption envelopes, and desorption envelopes (using sulfate and phosphate as desorbing ligands). MMAsIII and DMAsIII were not appreciably retained by goethite or ferrihydrite within the pH range of 3 to 11, while iAsIII was strongly adsorbed to both iron oxides. MMAsV and iAsV were adsorbed in higher amounts than DMAsV on goethite and ferrihydrite at all pH values studied. MMAsV and iAsV exhibited high adsorption affinities on both goethite and ferrihydrite from pH 3 to 10, while DMAsV was adsorbed only at pH values below 8 by ferrihydrite and below 7 by goethite. All arsenic compounds were desorbed more efficiently by phosphate than sulfate. MMAsV, iAsV, and DMAsV each exhibited adsorption characteristics suggesting specific adsorption on both goethite and ferrihydrite. Increased methyl substitution resulted in both decreased adsorbed arsenic at low arsenic concentrations in solution and increased ease of arsenic release from the iron oxide surface. Topics: Adsorption; Arsenicals; Borohydrides; Ferric Compounds; Ferritins; Hydrogen-Ion Concentration; Iron Compounds; Minerals; Phosphates; Spectrophotometry, Atomic; Sulfates | 2005 |
XANES investigation of phosphate sorption in single and binary systems of iron and aluminum oxide minerals.
Phosphate sorption on Fe- and Al-oxide minerals helps regulate the solubility and mobility of P in the environment. The objective of this study was to characterize phosphate adsorption and precipitation in single and binary systems of Fe- and Al-oxide minerals. Varying concentrations of phosphate were reacted for 42 h in aqueous suspensions containing goethite, ferrihydrite, boehmite, or noncrystalline (non-xl) Al-hydroxide, and in 1:1 (by mass) mixed-mineral suspensions of goethite/boehmite and ferrihydrite/ non-xl Al-hydroxide at pH 6 and 22 degrees C. X-ray absorption near edge structure (XANES) spectroscopy was used to detect precipitated phosphate and distinguish PO4 associated with Fe(III) versus Al(III) in mixed-mineral systems. Changes in the full width at half-maximum height (fwhm) in the white-line peak in P K-XANES spectra provided evidence for precipitation in Al-oxide single-mineral systems, but not in goethite or ferrihydrite systems. Similarly, adsorption isotherms and XANES data showed evidence for precipitation in goethite/boehmite mixtures, suggesting that mineral interactive effects on PO4 sorption were minimal. However, sorption in ferrihydrite/non-xl Al-hydroxide systems and a lack of XANES evidence for precipitation indicated that mineral interactions inhibited precipitation in these binary mixtures. Topics: Adsorption; Aluminum Oxide; Chemical Precipitation; Ferric Compounds; Ferritins; Iron Compounds; Minerals; Phosphates; Spectrum Analysis; X-Rays | 2005 |
Retention of tannic acid and condensed tannin by Fe-oxide-coated quartz sand.
This paper intends to shed light on the interactions between tannin and mineral soil particles. For that purpose, aqueous solution of condensed tannin (CT) (derived from Black pine (Pinus nigra var. maritima)) and commercially available tannic acid (TA) were added to purified quartz (Qtz) sand and quartz sand coated with either goethite (Gt) or ferrihydrite (Fh). After solvent removal by evaporation the samples were extracted by water. The extracts were analysed for organic carbon, total phenolics and CT. The extractability of the two tannins was small and increased in the order Qtz-Fh < Qtz-Gt < Qtz. For all mineral samples, TA was more extractable than CT. Bonding of tannins to the mineral samples and the partial peptisation of the Fe oxide coatings upon the binding resulted in complex tannin release curves. Our results suggest that the inextractability of tannins from natural soils and the absence of tannins in soil leachates might be caused by strong adsorption on soil minerals such as Qtz and Fe (oxy)(hydr)oxides. The results of competition experiments with mixtures of both tannins demonstrate that the CTs, and TA in particular, can release large amounts of Fe (oxides), suggesting that the tannins are excellent metal-mobilising agents. We therefore suggest that the fate of tannins in the mineral soil environment is highly dependent on the abundance of weakly bonded secondary oxides. Topics: Adsorption; Carbohydrate Sequence; Ferric Compounds; Iron Compounds; Minerals; Molecular Sequence Data; Molecular Structure; Proanthocyanidins; Quartz; Surface Properties; Tannins | 2005 |
Competing Fe (II)-induced mineralization pathways of ferrihydrite.
Owing to its high surface area and intrinsic reactivity, ferrihydrite serves as a dominant sink for numerous metals and nutrients in surface environments and is a potentially important terminal electron acceptor for microbial respiration. Introduction of Fe (II), by reductive dissolution of Fe(III) minerals, for example, converts ferrihydrite to Fe phases varying in their retention and reducing capacity. While Fe(II) concentration is the master variable dictating secondary mineralization pathways of ferrihydrite, here we reveal thatthe kinetics of conversion and ultimate mineral assemblage are a function of competing mineralization pathways influenced by pH and stabilizing ligands. Reaction of Fe(II) with ferrihydrite results in the precipitation of goethite, lepidocrocite, and magnetite. The three phases vary in their precipitation extent, rate, and residence time, all of which are primarily a function of Fe(II) concentration and ligand type (Cl, SO4, CO3). While lepidocrocite and goethite precipitate over a large Fe(II) concentration range, magnetite accumulation is only observed at surface loadings greater than 1.0 mmol Fe(II)/g ferrihydrite (in the absence of bicarbonate). Precipitation of magnetite induces the dissolution of lepidocrocite (presence of Cl) or goethite (presence of SO4), allowing for Fe(III)-dependent crystal growth. The rate of magnetite precipitation is a function of the relative proportions of goethite to lepidocrocite; the lower solubility of the former Fe (hydr)oxide slows magnetite precipitation. A one unit pH deviation from 7, however, either impedes (pH 6) or enhances (pH 8) magnetite precipitation. In the absence of magnetite nucleation, lepidocrocite and goethite continue to precipitate at the expense of ferrihydrite with near complete conversion within hours, the relative proportions of the two hydroxides dependent upon the ligand present. Goethite also continues to precipitate at the expense of lepidocrocite in the absence of chloride. In fact, the rate and extent of both goethite and magnetite precipitation are influenced by conditions conducive to the production and stability of lepidocrocite. Thus, predicting the secondary mineralization of ferrihydrite, a process having sweeping influences on contaminant/nutrient dynamics, will need to take into consideration kinetic restraints and transient precursor phases (e.g., lepidocrocite) that influence ensuing reaction pathways. Topics: Chlorides; Ferric Compounds; Ferrosoferric Oxide; Hydrogen-Ion Concentration; Hydroxides; Iron; Iron Compounds; Kinetics; Ligands; Microscopy, Electron, Transmission; Minerals; Surface Properties; Thermodynamics; Time Factors | 2005 |
EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite.
The modes of As(III) sorption onto two-line ferrihydrite (Fh), hematite (Hm), goethite (Gt), and lepidocrocite (Lp) have been investigated under anoxic condition using X-ray absorption spectroscopy (XAS). X-ray absorption near-edge structure spectroscopy (XANES) indicates that the absence of oxygen minimized As(III) oxidation due to Fenton reactions. Extended X-ray absorption fine structure spectroscopy (EXAFS) indicates thatAs(III)forms similar inner-sphere surface complexes on two-line ferrihydrite and hematite that differ from those formed on goethite and lepidocrocite. At high surface coverage, the dominant complex types on Fh and Hm are bidentate mononuclear edge-sharing (2E) and bidentate binuclear corner-sharing (2C), with As-Fe distances of 2.90 +/- 0.05 and 3.35 +/- 0.05 A, respectively. The same surface complexes are observed for ferrihydrite at low surface coverage. In contrast, As(III) forms dominantly bidentate binuclear corner-sharing (2C) sorption complexes on Gt and Lp [d(As-Fe) = 3.3-3.4 A], with a minor amount of monodentate mononuclear corner-sharing (1V) complexes [d(As-Fe) = 3.5-3.6 A]. Bidentate mononuclear edge-sharing (2E) complexes are virtually absent in Gt and Lp at the high surface coverages that were investigated in the present study. These results are compared with available literature data and discussed in terms of the reactivity of iron(III) (oxyhydr)oxide surface sites. Topics: Adsorption; Arsenic; Ferric Compounds; Iron Compounds; Minerals; Oxidation-Reduction; Spectrum Analysis; X-Rays | 2005 |
Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface.
Using the isotope specificity of 57Fe Mössbauer spectroscopy, we report spectroscopic observations of Fe(II) reacted with oxide surfaces under conditions typical of natural environments (i.e., wet, anoxic, circumneutral pH, and about 1% Fe(II)). Mössbauer spectra of Fe(II) adsorbed to rutile (TiO2) and aluminum oxide (Al2O3) show only Fe(II) species, whereas spectra of Fe(II) reacted with goethite (alpha-FeOOH), hematite (alpha-Fe2O3), and ferrihydrite (Fe5HO8) demonstrate electron transfer between the adsorbed Fe(II) and the underlying iron(III) oxide. Electron-transfer induces growth of an Fe(III) layer on the oxide surface that is similar to the bulk oxide. The resulting oxide is capable of reducing nitrobenzene (as expected based on previous studies), but interestingly, the oxide is only reactive when aqueous Fe(II) is present. This finding suggests a novel pathway for the biogeochemical cycling of Fe and also raises important questions regarding the mechanism of contaminant reduction by Fe(II) in the presence of oxide surfaces. Topics: Adsorption; Aluminum Oxide; Ferric Compounds; Ferritins; Ferrous Compounds; Iron Compounds; Iron Isotopes; Minerals; Oxidation-Reduction; Oxides; Spectroscopy, Mossbauer; Surface Properties; Titanium; Water | 2004 |
Oxidation of H2S by iron oxides in unsaturated conditions.
Previous studies have demonstrated that gas-phase H2S can immobilize certain redox-sensitive contaminants (e.g., Cr, U, Tc) in vadose zone environments. A key issue for effective and efficient delivery of H2S in these environments is the reactivity of the gas with indigenous iron oxides. To elucidate the factors that control the transport of H2S in the vadose zone, laboratory column experiments were conducted to identify reaction mechanisms and measure rates of H2S oxidation by iron oxide-coated sands using several carrier gas compositions (N2, air, and O2) and flow rates. Most experiments were conducted using ferrihydrite-coated sand. Additional studies were conducted with goethite- and hematite-coated sand and a natural sediment. Selective extractions were conducted at the end of each column experiment to determine the mass balance of the reaction products. XPS was used to confirm the presence of the reaction products. For column experiments in which ferrihydrite-coated sand was the substrate and N2 was the carrier gas, the major H2S oxidation products were FeS and elemental sulfur (mostly S8(0), represented as S(0) for simplicity) at ratios that were consistent with the stoichiometry of the postulated reactions. When air or O2 were used as the carrier gas, S(0) became the dominant reaction product along with FeS2 and smaller amounts of FeS, sulfate, and thiosulfate. A mathematical model of reactive transport was used to test the hypothesis that S(0) forming on the iron oxide surfaces reduces access of H2S to the reactive surface. Several conceptual models were assessed in the context of the postulated reactions with the final model based on a linear surface poisoning model and fitted reaction rates. These results indicate that carrier gas selection is a critical consideration with significant tradeoffs for remediation objectives. Topics: Chromates; Ferric Compounds; Ferritins; Hazardous Waste; Hydrogen Sulfide; Iron Compounds; Minerals; Models, Chemical; Oxidation-Reduction; Refuse Disposal | 2003 |
Measurement of iron(III) bioavailability in pure iron oxide minerals and soils using anthraquinone-2,6-disulfonate oxidation.
The quinol form (AHDS) of 9,10-anthraquinone-2,6-disulfonate (AQDS) was used as a titrant to determine bioavailability of Fe(III) in pure iron minerals and several soils. AHDS oxidation to AQDS was coupled to Fe(III) reduction to Fe(ll) in biological media consisting of trace salts and vitamins, providing estimates of bioavailability consistentwith the biogeochemical mechanisms and conditions that control Fe(III) availability to iron-reducing bacteria. Iron(III) oxide sources were synthetic oxides (amorphous and crystalline) and three soils separated into two size fractions each (0-500 and 500-1000 microm). This titration gave a measurement of the amount of Fe(III) available to dissimilatory iron-reducing bacteria and was compared to hydroxylamine reduction, oxalate extraction, and biological reduction by Shewanella alga BrY. The advantage of AHDS titration over existing chemical techniques is that it can be performed at normal soil pH and ionic strength, and it allows for distinction of iron(III) oxides rendered unavailable by sorption of Fe(II) or by other pH-dependent geochemical processes. This approach also allows distinction of Fe(III) present in micropores that is not directly available to bacteria but bioavailable in the presence of an electron shuttle capable of transporting electrons into the micropores. Topics: Anthraquinones; Ferric Compounds; Ferritins; Iron Compounds; Minerals; Models, Chemical; Oxidation-Reduction; Shewanella; Soil | 2001 |
Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products.
Crystals are generally considered to grow by attachment of ions to inorganic surfaces or organic templates. High-resolution transmission electron microscopy of biomineralization products of iron-oxidizing bacteria revealed an alternative coarsening mechanism in which adjacent 2- to 3-nanometer particles aggregate and rotate so their structures adopt parallel orientations in three dimensions. Crystal growth is accomplished by eliminating water molecules at interfaces and forming iron-oxygen bonds. Self-assembly occurs at multiple sites, leading to a coarser, polycrystalline material. Point defects (from surface-adsorbed impurities), dislocations, and slabs of structurally distinct material are created as a consequence of this growth mechanism and can dramatically impact subsequent reactivity. Topics: Betaproteobacteria; Chemical Phenomena; Chemistry, Physical; Colloids; Crystallization; Ferric Compounds; Ferritins; Hydrogen-Ion Concentration; Hydroxides; Iron Compounds; Microscopy, Electron; Minerals; Oxidation-Reduction | 2000 |
The role of biomineralization in microbiologically influenced corrosion.
Synthetic iron oxides (goethite, alpha-FeO.OH; hematite, Fe2O3; and ferrihydrite, Fe(OH)3) were used as model compounds to simulate the mineralogy of surface films on carbon steel. Dissolution of these oxides exposed to pure cultures of the metal-reducing bacterium, Shewanella putrefaciens, was followed by direct atomic absorption spectroscopy measurement of ferrous iron coupled with microscopic analyses using confocal laser scanning and environmental scanning electron microscopies. During an 8-day exposure the organism colonized mineral surfaces and reduced solid ferric oxides to soluble ferrous ions. Elemental composition, as monitored by energy dispersive x-ray spectroscopy, indicated mineral replacement reactions with both ferrihydrite and goethite as iron reduction occurred. When carbon steel electrodes were exposed to S. putrefaciens, microbiologically influenced corrosion was demonstrated electrochemically and microscopically. Topics: Biodegradation, Environmental; Carbon; Corrosion; Electrodes; Ferric Compounds; Ferritins; Gram-Negative Facultatively Anaerobic Rods; Iron; Iron Compounds; Microscopy, Confocal; Microscopy, Electron, Scanning; Minerals; Oxidation-Reduction; Sodium Chloride; Steel | 1998 |