farnesyl-pyrophosphate and linalool

farnesyl-pyrophosphate has been researched along with linalool* in 4 studies

Other Studies

4 other study(ies) available for farnesyl-pyrophosphate and linalool

ArticleYear
Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium.
    Planta, 2014, Volume: 240, Issue:4

    Hedychium coronarium, a perennial herb belonging to the family Zingiberaceae, is cultivated as a garden plant or cut flower as well as for medicine and aromatic oil. Its flowers emit a fresh and inviting scent, which is mainly because of monoterpenes present in the profile of the floral volatiles. However, fragrance produced as a result of monoterpenes has not been well studied. In the present study, two novel terpene synthase (TPS) genes (HcTPS7 and HcTPS8) were isolated to study the biosynthesis of monoterpenes in H. coronarium. In vitro characterization showed that the recombinant HcTPS7 was capable of generating sabinene as its main product, in addition to nine sub-products from geranyl diphosphate (GPP). Recombinant HcTPS8 almost specifically catalyzed the formation of linalool from GPP, while it converted farnesyl diphosphate (FPP) to α-bergamotene, cis-α-bisabolene, β-farnesene and other ten sesquiterpenes. Subcellular localization experiments revealed that HcTPS7 and HcTPS8 were located in plastids. Real-time PCR analyses showed that HcTPS7 and HcTPS8 genes were highly expressed in petals and sepals, but were almost undetectable in vegetative organs. The changes of their expression levels in petals were positively correlated with the emission patterns of sabinene and linalool, respectively, during flower development. The results indicated that HcTPS7 and HcTPS8 were involved in the biosynthesis of sabinene and linalool in H. coronarium flowers. Results on these two TPSs first characterized from H. coronarium provide new insights into molecular mechanisms of terpene biosynthesis in this species and also lay the basis for biotechnological modification of floral scent profile in Hedychium.

    Topics: Acyclic Monoterpenes; Base Sequence; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Flowers; Gene Expression; Gene Expression Regulation, Plant; Intramolecular Lyases; Molecular Sequence Data; Monoterpenes; Plant Proteins; Polyisoprenyl Phosphates; Sequence Analysis, DNA; Sesquiterpenes; Zingiberaceae

2014
Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis).
    Journal of experimental botany, 2012, Volume: 63, Issue:5

    Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers.

    Topics: Actinidia; Acyclic Monoterpenes; Alkyl and Aryl Transferases; Arabidopsis; Base Sequence; Diphosphates; Diterpenes; Farnesol; Flowers; Gene Expression Regulation, Plant; Kinetics; Molecular Sequence Data; Monoterpenes; Nicotiana; Oils, Volatile; Phylogeny; Plant Leaves; Plant Proteins; Polyisoprenyl Phosphates; Recombinant Proteins; Sequence Analysis, DNA; Sesquiterpenes; Substrate Specificity

2012
Monoterpenoid biosynthesis in Saccharomyces cerevisiae.
    FEMS yeast research, 2007, Volume: 7, Issue:3

    Plant monoterpenoids belong to a large family of plant secondary metabolites with valuable applications in cosmetics and medicine. Their usual low levels and difficult purification justify the need for alternative fermentative processes for large-scale production. Geranyl diphosphate is the universal precursor of monoterpenoids. In yeast it occurs exclusively as an intermediate of farnesyl diphosphate synthesis. In the present study we investigated the potential use of Saccharomyces cerevisiae as an alternative engineering tool. The expression of geraniol synthase of Ocimum basilicum in yeast allowed a strong and specific excretion of geraniol to the growth medium, in contrast to mutants defective in farnesyl diphosphate synthase which excreted geraniol and linalool in similar amounts. A further increase of geraniol synthesis was obtained using yeast mutants defective in farnesyl diphosphate synthase. We also showed that geraniol synthase expression affects the general ergosterol pathway, but in a manner dependent on the genetic background of the strain.

    Topics: Acyclic Monoterpenes; Gas Chromatography-Mass Spectrometry; Geranyltranstransferase; Industrial Microbiology; Microscopy, Confocal; Monoterpenes; Plasmids; Polyisoprenyl Phosphates; Saccharomyces cerevisiae; Sesquiterpenes; Terpenes; Transformation, Genetic

2007
Terpenoid metabolism in wild-type and transgenic Arabidopsis plants.
    The Plant cell, 2003, Volume: 15, Issue:12

    Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants.

    Topics: Acyclic Monoterpenes; Alkyl and Aryl Transferases; Animals; Aphids; Arabidopsis; Chloroplasts; Cichorium intybus; Gene Expression Regulation, Plant; Glycosylation; Hydroxylation; Monoterpenes; Plant Proteins; Plants, Genetically Modified; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Germacrane; Terpenes; Volatilization

2003