Page last updated: 2024-09-03

ezogabine and gamma-aminobutyric acid

ezogabine has been researched along with gamma-aminobutyric acid in 14 studies

*gamma-Aminobutyric Acid: The most common inhibitory neurotransmitter in the central nervous system. [MeSH]

*gamma-Aminobutyric Acid: The most common inhibitory neurotransmitter in the central nervous system. [MeSH]

Compound Research Comparison

Studies
(ezogabine)
Trials
(ezogabine)
Recent Studies (post-2010)
(ezogabine)
Studies
(gamma-aminobutyric acid)
Trials
(gamma-aminobutyric acid)
Recent Studies (post-2010) (gamma-aminobutyric acid)
3832624140,2151,4239,631

Protein Interaction Comparison

ProteinTaxonomyezogabine (IC50)gamma-aminobutyric acid (IC50)
Gamma-aminobutyric acid receptor subunit piRattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid type B receptor subunit 2Rattus norvegicus (Norway rat)0.0292
Gamma-aminobutyric acid receptor subunit beta-1Rattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit deltaRattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit gamma-2Rattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit alpha-5Rattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit alpha-3Rattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit gamma-1Rattus norvegicus (Norway rat)0.0332
Gamma-aminobutyric acid receptor subunit alpha-2Rattus norvegicus (Norway rat)0.0323
Sodium- and chloride-dependent GABA transporter 1Rattus norvegicus (Norway rat)2.152
Gamma-aminobutyric acid receptor subunit alpha-4Rattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit gamma-3Rattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit alpha-6Rattus norvegicus (Norway rat)0.0333
Sodium- and chloride-dependent GABA transporter 1Homo sapiens (human)5.2623
Sodium- and chloride-dependent taurine transporterHomo sapiens (human)354
Sodium- and chloride-dependent GABA transporter 2Rattus norvegicus (Norway rat)2.51
Sodium- and chloride-dependent GABA transporter 3Rattus norvegicus (Norway rat)0.02
Sodium- and chloride-dependent GABA transporter 1Mus musculus (house mouse)6.349
Sodium- and chloride-dependent GABA transporter 2Mus musculus (house mouse)7.0795
Sodium- and chloride-dependent GABA transporter 3Mus musculus (house mouse)8.1283
Sodium- and chloride-dependent betaine transporterRattus norvegicus (Norway rat)0.02
Sodium- and chloride-dependent betaine transporterHomo sapiens (human)6.4082
Sodium- and chloride-dependent GABA transporter 3Homo sapiens (human)3.9953
Gamma-aminobutyric acid receptor subunit alpha-1Rattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit beta-3Rattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit beta-2Rattus norvegicus (Norway rat)0.0333
GABA theta subunitRattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid receptor subunit epsilonRattus norvegicus (Norway rat)0.0333
Gamma-aminobutyric acid type B receptor subunit 1Rattus norvegicus (Norway rat)0.0292

Research

Studies (14)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (7.14)18.2507
2000's11 (78.57)29.6817
2010's2 (14.29)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Kapetanovic, IM; Kupferberg, HJ; Yonekawa, WD1
Dost, R; Rundfeldt, C1
Brodie, MJ; Butler, E; Forrest, G; Rundfeldt, C; Sills, GJ; Thompson, GG1
Netzer, R; Rundfeldt, C1
Rekling, JC1
van Rijn, CM; Willems-van Bree, E2
Annunziato, L; Castaldo, P; D'Amico, M; Martire, M; Preziosi, P; Taglialatela, M1
Dost, R; Rostock, A; Rundfeldt, C1
Green, AC; Harrison, PK; Sheridan, RD; Tattersall, JE1
Miura, Y1
Cherubini, E; Safiulina, VF; Taglialatela, M; Yaari, Y; Zacchi, P1
Kaba, H; Takahashi, Y1
Bastin, ML; Cook, AM; Oyler, DR; Smetana, KS1

Reviews

2 review(s) available for ezogabine and gamma-aminobutyric acid

ArticleYear
[A new aspect in the research on antiepileptic drugs].
    Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 2007, Volume: 129, Issue:2

    Topics: Acetamides; Amines; Animals; Anticonvulsants; Benzodiazepines; Carbamates; Cyclohexanecarboxylic Acids; Disease Models, Animal; Drug Design; Gabapentin; gamma-Aminobutyric Acid; Humans; Lacosamide; Levetiracetam; Phenylenediamines; Piracetam; Pregabalin; Pregnanolone; Pyrrolidinones; Triazoles

2007
Antiepileptic dosing for critically ill adult patients receiving renal replacement therapy.
    Journal of critical care, 2016, Volume: 36

    Topics: Acetamides; Acute Kidney Injury; Amines; Anticonvulsants; Carbamates; Critical Illness; Cyclohexanecarboxylic Acids; Dibenzazepines; Dose-Response Relationship, Drug; Ethosuximide; Felbamate; Fructose; Gabapentin; gamma-Aminobutyric Acid; Humans; Isoxazoles; Lacosamide; Lamotrigine; Levetiracetam; Phenobarbital; Phenylcarbamates; Phenylenediamines; Phenytoin; Piracetam; Propylene Glycols; Renal Dialysis; Renal Replacement Therapy; Seizures; Topiramate; Triazines; Valproic Acid; Zonisamide

2016

Other Studies

12 other study(ies) available for ezogabine and gamma-aminobutyric acid

ArticleYear
The effects of D-23129, a new experimental anticonvulsant drug, on neurotransmitter amino acids in the rat hippocampus in vitro.
    Epilepsy research, 1995, Volume: 22, Issue:3

    Topics: 4-Aminopyridine; Animals; Anticonvulsants; Carbamates; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Male; Nerve Tissue Proteins; Neurotransmitter Agents; Phenylenediamines; Rats; Rats, Inbred Strains; Tetrodotoxin

1995
The anticonvulsant retigabine potently suppresses epileptiform discharges in the low Ca ++ and low Mg++ model in the hippocampal slice preparation.
    Epilepsy research, 2000, Volume: 38, Issue:1

    Topics: Animals; Anticonvulsants; Calcium; Carbamates; Electrophysiology; Epilepsy; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Magnesium Deficiency; Male; Phenylenediamines; Potassium Channels; Rats; Rats, Wistar

2000
A neurochemical study of the novel antiepileptic drug retigabine in mouse brain.
    Pharmacological research, 2000, Volume: 42, Issue:6

    Topics: 4-Aminobutyrate Transaminase; Animals; Anticonvulsants; Brain Chemistry; Carbamates; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Glutamic Acid; Glutamine; Male; Mice; Mice, Inbred ICR; Phenylenediamines

2000
Investigations into the mechanism of action of the new anticonvulsant retigabine. Interaction with GABAergic and glutamatergic neurotransmission and with voltage gated ion channels.
    Arzneimittel-Forschung, 2000, Volume: 50, Issue:12

    Topics: Animals; Anticonvulsants; Calcium Channels; Carbamates; Cells, Cultured; Excitatory Amino Acid Agonists; Female; gamma-Aminobutyric Acid; Glutamic Acid; Ion Channel Gating; Kainic Acid; Neurons; Patch-Clamp Techniques; Phenylenediamines; Rats; Sodium Channels; Synaptic Transmission

2000
Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation.
    Neuroscience letters, 2003, Jan-02, Volume: 335, Issue:3

    Topics: Acetates; Amines; Animals; Anticonvulsants; Carbamates; Carbamazepine; Cell Death; Cells, Cultured; Chlordiazepoxide; Cyclohexanecarboxylic Acids; Dose-Response Relationship, Drug; Ethosuximide; Felbamate; Gabapentin; gamma-Aminobutyric Acid; Glucose; Hippocampus; Hypoxia; Ischemia; Lamotrigine; Levetiracetam; Midazolam; Neurons; Neuroprotective Agents; Nipecotic Acids; Oxcarbazepine; Phenobarbital; Phenylcarbamates; Phenylenediamines; Phenytoin; Piracetam; Propylene Glycols; Rats; Rats, Wistar; Tiagabine; Triazines; Valproic Acid

2003
Synergy between retigabine and GABA in modulating the convulsant site of the GABAA receptor complex.
    European journal of pharmacology, 2003, Mar-19, Volume: 464, Issue:2-3

    Topics: Animals; Anticonvulsants; Binding, Competitive; Bridged Bicyclo Compounds, Heterocyclic; Carbamates; Dose-Response Relationship, Drug; Drug Synergism; gamma-Aminobutyric Acid; Kinetics; Models, Biological; Phenylenediamines; Rats; Rats, Wistar; Receptors, GABA-A; Tritium

2003
M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2004, Jan-21, Volume: 24, Issue:3

    Topics: Aminopyridines; Animals; Anthracenes; Anticonvulsants; Aspartic Acid; Carbamates; CHO Cells; Cricetinae; gamma-Aminobutyric Acid; Hippocampus; KCNQ2 Potassium Channel; KCNQ3 Potassium Channel; Male; Norepinephrine; Patch-Clamp Techniques; Phenylenediamines; Potassium; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Presynaptic Terminals; Protein Subunits; Rats; Synaptosomes

2004
A four-ligand hypercube model to quantify allosteric interactions within the GABAA receptor complex.
    European journal of pharmacology, 2004, Feb-06, Volume: 485, Issue:1-3

    Topics: Allosteric Site; Animals; Binding Sites; Carbamates; Dose-Response Relationship, Drug; gamma-Aminobutyric Acid; Ligands; Models, Chemical; Models, Molecular; Models, Neurological; Phenylenediamines; Prosencephalon; Rats; Rats, Wistar; Receptors, GABA-A

2004
The anti-hyperalgesic activity of retigabine is mediated by KCNQ potassium channel activation.
    Naunyn-Schmiedeberg's archives of pharmacology, 2004, Volume: 369, Issue:4

    Topics: Acute Disease; Amines; Analgesics, Opioid; Animals; Carbamates; Cyclohexanecarboxylic Acids; Disease Models, Animal; Dose-Response Relationship, Drug; Gabapentin; gamma-Aminobutyric Acid; Hyperalgesia; Indoles; Ion Channel Gating; KCNQ2 Potassium Channel; KCNQ3 Potassium Channel; Male; Mice; Peripheral Nervous System Diseases; Phenylenediamines; Physical Stimulation; Potassium Channel Blockers; Potassium Channels, Voltage-Gated; Pyridines; Rats; Rats, Wistar; Spinal Nerves; Touch; Tramadol

2004
Effects of anticonvulsants on soman-induced epileptiform activity in the guinea-pig in vitro hippocampus.
    European journal of pharmacology, 2005, Aug-22, Volume: 518, Issue:2-3

    Topics: Amines; Animals; Anticonvulsants; Carbamates; Carbamazepine; Chlormethiazole; Clozapine; Cyclohexanecarboxylic Acids; Dose-Response Relationship, Drug; Epilepsy; Felbamate; Fructose; Gabapentin; gamma-Aminobutyric Acid; Guinea Pigs; Hippocampus; In Vitro Techniques; Levetiracetam; Male; Phenylcarbamates; Phenylenediamines; Piracetam; Propylene Glycols; Soman; Topiramate

2005
Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus.
    The Journal of physiology, 2008, Nov-15, Volume: 586, Issue:22

    Topics: Action Potentials; Animals; Animals, Newborn; Carbamates; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Indoles; KCNQ2 Potassium Channel; Kinetics; Nerve Net; Phenylenediamines; Potassium Channel Blockers; Pyramidal Cells; Pyridines; Rats; Rats, Wistar; Sodium Potassium Chloride Symporter Inhibitors; Sodium-Potassium-Chloride Symporters; Solute Carrier Family 12, Member 2; Synaptic Transmission

2008
Muscarinic receptor type 1 (M1) stimulation, probably through KCNQ/Kv7 channel closure, increases spontaneous GABA release at the dendrodendritic synapse in the mouse accessory olfactory bulb.
    Brain research, 2010, Jun-21, Volume: 1339

    Topics: Alkaloids; Animals; Anticonvulsants; Calcium; Calcium Channel Blockers; Calcium Channels, R-Type; Carbachol; Carbamates; Cholinergic Agonists; Dendrites; Diclofenac; Excitatory Amino Acid Antagonists; Furans; GABA Antagonists; gamma-Aminobutyric Acid; In Vitro Techniques; Ion Channel Gating; KCNQ Potassium Channels; Mice; Mice, Inbred BALB C; Muscarinic Antagonists; Naphthalenes; Nimodipine; Olfactory Bulb; Patch-Clamp Techniques; Phenylenediamines; Piperidines; Pirenzepine; Potassium Channel Blockers; Receptor, Muscarinic M1; Receptors, Glutamate; Synapses

2010