exenatide and salmon-calcitonin

exenatide has been researched along with salmon-calcitonin* in 3 studies

Other Studies

3 other study(ies) available for exenatide and salmon-calcitonin

ArticleYear
Liquid Chromatography-High Resolution Mass Spectrometry for Peptide Drug Quality Control.
    The AAPS journal, 2015, Volume: 17, Issue:3

    A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method was developed using three peptide drugs: salmon calcitonin, bivalirudin, and exenatide as model systems to assess the suitability of this approach for monitoring peptide drug product quality. Calcitonin and its related impurities displayed linear responses over the range from 0.1 to 10 μM (R (2) values for calcitonin salmon, Glu(14)-calcitonin, and acetyl-calcitonin were 0.995, 0.996, and 0.993, respectively). Intra-assay precision in terms of relative standard deviation (%RSD) was less than 10% at all tested concentrations. The accuracy of the method was greater than 85% as measured by spiking 0.1, 0.3, and 1% of Glu(14)-calcitonin and acetyl-calcitonin into a stock calcitonin solution. Limits of detection for calcitonin, Glu(14)-calcitonin, and acetyl-calcitonin were 0.02, 0.03, and 0.04 μM, respectively, indicating that an impurity present at less than 0.1% (0.1 μM) of the drug product API concentration (107 μM) could be detected. Method validation studies analyzing bivalirudin and exenatide drug products exhibited similar results to calcitonin salmon in regard to high selectivity, sensitivity, precision, and linearity. Added benefits of using LC-HRMS-based methods are the ability to also determine amino acid composition, confirm peptide sequence, and quantify impurities, even when they are co-eluting, within a single experiment. LC-HRMS represents a promising approach for the quality control of peptides including the measurement of any peptide-related impurities. While the development work performed here is focus on peptide drug products, the principles could be adapted to peptide drug substance.

    Topics: Amino Acid Sequence; Calcitonin; Chromatography, Liquid; Exenatide; Hirudins; Limit of Detection; Mass Spectrometry; Peptide Fragments; Peptides; Quality Control; Recombinant Proteins; Venoms

2015
Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4.
    Endocrinology, 2011, Volume: 152, Issue:8

    The long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists, exendin-4 and liraglutide, suppress food intake and body weight. The mediating site(s) of action for the anorectic effects produced by peripheral administration of these GLP-1R agonists are not known. Experiments addressed whether food intake suppression after i.p. delivery of exendin-4 and liraglutide is mediated exclusively by peripheral GLP-1R or also involves direct central nervous system (CNS) GLP-1R activation. Results showed that CNS delivery [third intracerebroventricular (3(rd) ICV)] of the GLP-1R antagonist exendin-(9-39) (100 μg), attenuated the intake suppression by i.p. liraglutide (10 μg) and exendin-4 (3 μg), particularly at 6 h and 24 h. Control experiments show that these findings appear to be based neither on the GLP-1R antagonist acting as a nonspecific competing orexigenic signal nor on blockade of peripheral GLP-1R via efflux of exendin-(9-39) to the periphery. To assess the contribution of GLP-1R expressed on subdiaphragmatic vagal afferents to the anorectic effects of liraglutide and exendin-4, food intake was compared in rats with complete subdiaphragmatic vagal deafferentation and surgical controls after i.p. delivery of the agonists. Both liraglutide and exendin-4 suppressed food intake at 3 h, 6 h, and 24 h for controls; for subdiaphragmatic vagal deafferentation rats higher doses of the GLP-1R agonists were needed for significant food intake suppression, which was observed at 6 h and 24 h after liraglutide and at 24 h after exendin-4.. Food intake suppression after peripheral administration of exendin-4 and liraglutide is mediated by activation of GLP-1R expressed on vagal afferents as well as direct CNS GLP-1R activation.

    Topics: Animals; Appetite Depressants; Body Weight; Brain; Calcitonin; Eating; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Liraglutide; Male; Peptide Fragments; Peptides; Rats; Rats, Sprague-Dawley; Receptors, Glucagon; Vagus Nerve; Venoms

2011
Dose combinations of exendin-4 and salmon calcitonin produce additive and synergistic reductions in food intake in nonhuman primates.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2010, Volume: 299, Issue:3

    Glucagon-like peptide-1 (GLP-1) and amylin mediate the feedback control of eating by seemingly separate, but overlapping mechanisms. This study examined the effects of combined doses of the GLP-1 agonist, exendin-4 (Ex-4), and the amylin analog, salmon calcitonin (sCT), on food intake and meal patterns in adult male rhesus monkeys. Monkeys received intramuscular injections of Ex-4 (0, 0.1, 0.32, or 0.56 microg/kg), sCT (0, 0.1, or 0.32 microg/kg), or combinations thereof before a 6-h daily access to food. Dose combinations produced reductions in food intake that were significantly greater than those produced by the individual doses. Surface plots of the hourly intake indicated a synergistic interaction at lower doses of Ex-4 and sCT during the first 4 h of feeding and additive effects at hours 5 and 6. Meal pattern analysis revealed the combinational doses reduced average meal size and meal frequency by additive interactions, whereas infra-additive effects were apparent at lower doses for first meal size. Combinational doses were further characterized by administration of repeated daily injections of 0.56 microg/kg Ex-4 + 0.32 microg/kg sCT for 5 days. This resulted in sustained reductions in daily food intake (>70% from saline baseline) for 5 days with residual reductions ( approximately 48% from saline baseline) persisting on day 1 following the injections. In contrast, when pair-fed an identical amount of daily food, there was a compensatory food intake increase on day 1 following the pair-feeding ( approximately 132% of saline baseline). Such data suggest Ex-4 and sCT interact in an overall additive fashion to reduce food intake and further the understanding of how GLP-1 and amylin agonist combinations influence feeding behavior.

    Topics: Animals; Calcitonin; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Synergism; Drug Therapy, Combination; Eating; Exenatide; Feeding Behavior; Macaca mulatta; Male; Peptides; Venoms

2010