exenatide has been researched along with 3-methyladenine* in 4 studies
4 other study(ies) available for exenatide and 3-methyladenine
Article | Year |
---|---|
Exenatide improves random-pattern skin flap survival via TFE3 mediated autophagy augment.
Random-pattern skin flaps are widely applied to rebuild and restore soft-tissue damage in reconstructive surgery; however, ischemia and subsequent ischemia-reperfusion injury lead to flap necrosis and are major complications. Exenatide, a glucagon-like peptide-1 analog, exerts therapeutic benefits for diabetic wounds, cardiac injury, and nonalcoholic fatty liver disease. Furthermore, Exenatide is a known activator of autophagy, which is a complex process of subcellular degradation that may enhance the viability of random skin flaps. In this study, we explored whether exenatide can improve skin flap survival. Our results showed that exenatide augments autophagy, increases flap viability, enhances angiogenesis, reduces oxidative stress, and alleviates pyroptosis. Coadministration of exenatide with 3-methyladenine and chloroquine, potent inhibitors of autophagy, reversed the beneficial effects, suggesting that the therapeutic benefits of exenatide for skin flaps are due largely to autophagy activation. Mechanistically, we identified that exenatide enhanced activation and nuclear translocation of TFE3, which leads to autophagy activation. Furthermore, we found that exenatide activates the AMPK-SKP2-CARM1 and AMPK-mTOR signaling pathways, which likely lead to exenatide's effects on activating TFE3. Overall, our findings suggest that exenatide may be a potent therapy to prevent flap necrosis, and we also reveal novel mechanistic insight into exenatide's effect on flap survival. Topics: Adenine; Adenylate Kinase; Animals; Autophagy; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cell Nucleus; Down-Regulation; Edema; Exenatide; Graft Survival; Male; Mice, Inbred C57BL; Neovascularization, Physiologic; Oxidative Stress; Protein Transport; Protein-Arginine N-Methyltransferases; Pyroptosis; Signal Transduction; Skin; Skin Transplantation; TOR Serine-Threonine Kinases; Up-Regulation | 2021 |
Exendin-4 impairs the autophagic flux to induce apoptosis in pancreatic acinar AR42J cells by down-regulating LAMP-2.
This study aimed to explore the mechanism of impaired autophagy flux induced by exendin-4 and its role on cell apoptosis in pancreatic AR42J cells. The AR42J cells were treated with various concentration of exendin-4 for several time points to assess its cytotoxicity by MTT assay. Then the AR42J cells were treated by 10pM exendin-4 for 72 h, the cell death was analyzed by flow cytometry and caspase-3 level was examined by Western blot with or without the pretreatment of z-VAD-fmk to testify whether exendin-4 induces the cell apoptosis. The protein levels of LC3B, p62 and LAMP-2 were assessed by Western blot, the mRNA level of LAMP-2 was quantified by quantitative PCR in the absence or presence of LAMP-2 over-expression plasmid and the expression and activity of CatB and CatL were tested by ELISA or activity assay methods in AR42J cells treated by exendin-4. The normal rats and the diabetes-model rats by high-fat and high-sugar diet for two month then with streptozotocin intraperitoneally were subcutaneously injected with exendin-4 for 10 weeks to test the expression of LAMP-2 mRNA and protein in the pancreas. Cells pretreated with Bafilomycin A1 were detected for LC3B and p62 expressions by Western blot. Cells pretreated by 3-MA were used to assess whether 3-MA can protect from exendin-4 cytotoxicity. We found that exendin-4 can decrease the AR42J cell viability as well as increase the cell death and cleaved caspase-3 level, which all can be inhibited by z-VAD-fmk. Exendin-4 can downregulate the expression of LAMP-2 and then impair the autophagy flux to induce the accumulation of LC3B-II and p62, but cannot change the expression and activity of CatB and CatL. Bafilomycin A1 almostly have no impact on the change of LC3B and p62 protein levels induced by exendin-4. Both 3-MA and overexpressed LAMP-2 can reduce the cytotoxicity of exendin-4. Therefore, we considered the down-regulation of LAMP-2 which can impair the autophagy flux by inhibiting the fusion of autophagosomes with lysosomes to induce the AR42J cell apoptosis as the potential mechanism of chronic pancreatitis induced by exendin-4. Topics: Acinar Cells; Adenine; Amino Acid Chloromethyl Ketones; Animals; Autophagy; Caspase 3; Cathepsin B; Cathepsin L; Cell Line; Diabetes Mellitus, Experimental; Diet, High-Fat; Exenatide; Gene Expression Regulation; Lysosomal-Associated Membrane Protein 2; Macrolides; Male; Microtubule-Associated Proteins; Pancreas; Peptides; Rats; Rats, Sprague-Dawley; Sequestosome-1 Protein; Signal Transduction; Streptozocin; Venoms | 2018 |
Effect of Exendin-4 on Autophagy Clearance in Beta Cell of Rats with Tacrolimus-induced Diabetes Mellitus.
Growing evidence suggests that GLP-1 protects beta cells against various cellular injuries by modulating autophagy. In this study, we examined whether exendin-4 (Ex-4), a GLP-1 analog, had preventive effects on tacrolimus (Tac)-induced beta cell injury by improving autophagy clearance. Rats with Tac-induced diabetes mellitus exhibited increased autophagy-associated protein expression, light chain 3B levels, and autophagic vacuole numbers in pancreatic beta cells. Additionally, Tac increased autophagy in a dose- and time-dependent manner in vitro, and inhibition of autophagosome using 3-methyladenine reduced Tac-induced islet cell injury by decreasing reactive oxygen species production and apoptosis. Ex-4 treatment decreased Tac-induced hyperglycaemia, oxidative stress, and apoptosis, accompanied by decreased autophagy-associated protein expression and autophagosome numbers. In vivo and in vitro studies showed that Tac treatment impaired lysosomal function and autophagosome-lysosome fusion; these processes were improve by Ex-4 treatment. Moreover, addition of bafilomycin A1, an inhibitor of lysosomal function, abolished the protective effects of Ex-4. Our findings reveal that Tac-induced diabetes mellitus was a state of excessive burden of autophagosomes and impairment of autophagy clearance and that Ex-4 protected against Tac-induced pancreatic islet injury by reducing the burden of autophagosomes via activation of autophagosome clearance. Thus, Ex-4 had therapeutic effects on Tac-induced pancreatic beta cell injury. Topics: Adenine; Animals; Apoptosis; Autophagy; Cell Line; Diabetes Mellitus; Exenatide; Insulin-Secreting Cells; Lysosomes; Macrolides; Male; Oxidative Stress; Peptides; Phagosomes; Protective Agents; Rats, Sprague-Dawley; Tacrolimus; Venoms | 2016 |
Mitigation of autophagy ameliorates hepatocellular damage following ischemia-reperfusion injury in murine steatotic liver.
Ischemia-reperfusion injury (IRI) is a common clinical consequence of hepatic surgery, cardiogenic shock, and liver transplantation. A steatotic liver is particularly vulnerable to IRI, responding with extensive hepatocellular injury. Autophagy, a lysosomal pathway balancing cell survival and cell death, is engaged in IRI, although its role in IRI of a steatotic liver is unclear. The role of autophagy was investigated in high-fat diet (HFD)-fed mice exposed to IRI in vivo and in steatotic hepatocytes exposed to hypoxic IRI (HIRI) in vitro. Two inhibitors of autophagy, 3-methyladenine and bafilomycin A1, protected the steatotic hepatocytes from HIRI. Exendin 4 (Ex4), a glucagon-like peptide 1 analog, also led to suppression of autophagy, as evidenced by decreased autophagy-associated proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3) II, p62, high-mobility group protein B1, beclin-1, and autophagy-related protein 7], reduced hepatocellular damage, and improved mitochondrial structure and function in HFD-fed mice exposed to IRI. Decreased autophagy was further demonstrated by reversal of a punctate pattern of LC3 and decreased autophagic flux after IRI in HFD-fed mice. Under the same conditions, the effects of Ex4 were reversed by the competitive antagonist exendin 9-39. The present study suggests that, in IRI of hepatic steatosis, treatment of hepatocytes with Ex4 mitigates autophagy, ameliorates hepatocellular injury, and preserves mitochondrial integrity. These data suggest that therapies targeting autophagy, by Ex4 treatment in particular, may ameliorate the effects of IRI in highly prevalent steatotic liver. Topics: Adenine; Animals; Autophagy; Cells, Cultured; Exenatide; Hepatocytes; Humans; Macrolides; Male; Mice; Mice, Inbred C57BL; Mitochondria, Liver; Non-alcoholic Fatty Liver Disease; Peptides; Reperfusion Injury; Venoms | 2014 |