evp-4593 and regorafenib

evp-4593 has been researched along with regorafenib* in 1 studies

Other Studies

1 other study(ies) available for evp-4593 and regorafenib

ArticleYear
Regorafenib induces extrinsic and intrinsic apoptosis through inhibition of ERK/NF-κB activation in hepatocellular carcinoma cells.
    Oncology reports, 2017, Volume: 37, Issue:2

    The aim of the present study was to investigate the role of NF-κB inactivation in regorafenib-induced apoptosis in human hepatocellular carcinoma SK-HEP-1 cells. SK-HEP-1 cells were treated with different concentrations of the NF-κB inhibitor 4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine (QNZ) or regorafenib for different periods. The effects of QNZ and regorafenib on cell viability, expression of NF-κB-modulated anti-apoptotic proteins and apoptotic pathways were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, DNA gel electrophoresis, flow cytometry and NF-κB reporter gene assay. Inhibitors of various kinases including AKT, c-Jun N-terminal kinase (JNK), P38 and extracellular signal-regulated kinase (ERK) were used to evaluate the mechanism of regorafenib-induced NF-κB inactivation. The results demonstrated that both QNZ and regorafenib significantly inhibited the expression of anti-apoptotic proteins and triggered extrinsic and intrinsic apoptosis. We also demonstrated that regorafenib inhibited NF-κB activation through ERK dephosphorylation. Taken all together, our findings indicate that regorafenib triggers extrinsic and intrinsic apoptosis through suppression of ERK/NF-κB activation in SK-HEP-1 cells.

    Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Humans; Liver Neoplasms; Membrane Potential, Mitochondrial; NF-kappa B; Phenyl Ethers; Phenylurea Compounds; Phosphorylation; Pyridines; Quinazolines; X-Linked Inhibitor of Apoptosis Protein

2017