etoposide has been researched along with phenobarbital in 17 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 3 (17.65) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 6 (35.29) | 29.6817 |
2010's | 8 (47.06) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM | 1 |
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM | 1 |
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM | 1 |
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV | 1 |
Glen, RC; Lowe, R; Mitchell, JB | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY | 1 |
Aghaei, I; Akbarzadeh, T; Emami, S; Faizi, M; Foroumadi, A; Jahani, R; Mahdavi, M; Mohammadi-Khanaposhtani, M; Shabani, M; Shafiee, A; Shamsaei Zafarghandi, N; Sharafi, Z | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Haim, N; Nemec, J; Roman, J; Sinha, BK | 1 |
Bakkenist, TR; de Vries, J; Lankelma, J; Pinedo, HM; Retèl, J; van den Akker, E; Van Maanen, JM | 1 |
de Ruiter, C; de Vries, J; Gobas, F; Kootstra, PR; Pinedo, HM; van Maanen, JM | 1 |
Berg, S; Bernstein, M; Blaney, SM; Cherrick, I; Kuttesch, N; Murry, DJ; Salama, V | 1 |
1 review(s) available for etoposide and phenobarbital
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
16 other study(ies) available for etoposide and phenobarbital
Article | Year |
---|---|
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship | 2008 |
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship | 2008 |
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
Topics: | 2008 |
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations | 2010 |
Predicting phospholipidosis using machine learning.
Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine | 2010 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding | 2012 |
Design, synthesis, pharmacological evaluation, and docking study of new acridone-based 1,2,4-oxadiazoles as potential anticonvulsant agents.
Topics: Acridines; Acridones; Animals; Anticonvulsants; Electroshock; Mice; Molecular Docking Simulation; Oxadiazoles; Pentylenetetrazole; Receptors, GABA-A; Seizures | 2016 |
In vitro metabolism of etoposide (VP-16-213) by liver microsomes and irreversible binding of reactive intermediates to microsomal proteins.
Topics: Animals; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Electron Spin Resonance Spectroscopy; Etoposide; Mice; Microsomes, Liver; NADP; Phenobarbital; Piperonyl Butoxide; Proadifen; Proteins | 1987 |
Structure-bioactivation relationship of a series of podophyllotoxin derivatives.
Topics: Animals; Cell Survival; Cytochrome P-450 Enzyme System; Etoposide; Male; Methylcholanthrene; Microsomes, Liver; Phenobarbital; Podophyllotoxin; Rats; Rats, Inbred Strains; Spectrophotometry; Structure-Activity Relationship; Teniposide | 1988 |
The role of metabolic activation by cytochrome P-450 in covalent binding of VP 16-213 to rat liver and HeLa cell microsomal proteins.
Topics: Animals; Ascorbic Acid; Biotransformation; Cytochrome P-450 Enzyme System; Etoposide; HeLa Cells; Humans; In Vitro Techniques; Microsomes; Microsomes, Liver; NADP; Neoplasm Proteins; Nitrogen Oxides; Phenobarbital; Podophyllotoxin; Proadifen; Protein Binding; Pyridines; Rats; Rats, Inbred Strains | 1985 |
Influence of phenytoin on the disposition of irinotecan: a case report.
Topics: Adolescent; Anticonvulsants; Antineoplastic Agents, Phytogenic; Antineoplastic Combined Chemotherapy Protocols; Area Under Curve; Brain Neoplasms; Camptothecin; Carboplatin; Cisplatin; Combined Modality Therapy; Cranial Irradiation; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Dexamethasone; Disease Progression; Drug Interactions; Enzyme Induction; Etoposide; Hematopoietic Stem Cell Transplantation; Humans; Irinotecan; Male; Melphalan; Mixed Function Oxygenases; Neoplasm Recurrence, Local; Ondansetron; Phenobarbital; Phenytoin; Pineal Gland; Pinealoma; Prodrugs; Salvage Therapy; Seizures | 2002 |