Page last updated: 2024-08-23

etoposide and naringin

etoposide has been researched along with naringin in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's3 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Benet, LZ; Brouwer, KL; Chu, X; Dahlin, A; Evers, R; Fischer, V; Giacomini, KM; Hillgren, KM; Hoffmaster, KA; Huang, SM; Ishikawa, T; Keppler, D; Kim, RB; Lee, CA; Niemi, M; Polli, JW; Sugiyama, Y; Swaan, PW; Tweedie, DJ; Ware, JA; Wright, SH; Yee, SW; Zamek-Gliszczynski, MJ; Zhang, L1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1

Reviews

1 review(s) available for etoposide and naringin

ArticleYear
Membrane transporters in drug development.
    Nature reviews. Drug discovery, 2010, Volume: 9, Issue:3

    Topics: Animals; Computer Simulation; Decision Trees; Drug Approval; Drug Discovery; Drug Evaluation, Preclinical; Drug Interactions; Humans; Membrane Transport Proteins; Mice; Mice, Knockout; Prescription Drugs

2010

Other Studies

2 other study(ies) available for etoposide and naringin

ArticleYear
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012