Page last updated: 2024-08-23

etoposide and inositol

etoposide has been researched along with inositol in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (50.00)29.6817
2010's3 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Billi, AM; Bortul, R; Cocco, L; Conte, R; Manzoli, L; Martelli, AM; Ruggeri, A; Tabellini, G; Tazzari, PL1
Fioretos, T; Gullberg, U; Lassen, C; Olofsson, T; Richter, J; Svensson, E; Vidovic, K1

Other Studies

6 other study(ies) available for etoposide and inositol

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells.
    Leukemia, 2003, Volume: 17, Issue:9

    Topics: Antineoplastic Agents; bcl-Associated Death Protein; Blotting, Western; Carrier Proteins; CASP8 and FADD-Like Apoptosis Regulating Protein; Caspases; Chromones; Cytarabine; Cytochrome c Group; Drug Resistance, Neoplasm; Enzyme Inhibitors; Etoposide; HL-60 Cells; Humans; Inhibitor of Apoptosis Proteins; Inositol; Intracellular Signaling Peptides and Proteins; Isoenzymes; Morpholines; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphoric Monoester Hydrolases; Phosphorylation; Protein Kinase C; Protein Kinase C-theta; Protein Serine-Threonine Kinases; Proteins; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Radiation, Ionizing; Ribosomal Protein S6 Kinases, 70-kDa; Transfection; Tretinoin; Tumor Suppressor Proteins; Ubiquitin-Protein Ligases

2003
Deregulation of the Wilms' tumour gene 1 protein (WT1) by BCR/ABL1 mediates resistance to imatinib in human leukaemia cells.
    Leukemia, 2007, Volume: 21, Issue:12

    Topics: Apoptosis; Benzamides; Cell Line, Tumor; Cells, Cultured; Chromones; Drug Resistance, Neoplasm; Etoposide; Fusion Proteins, bcr-abl; Gene Expression Regulation, Leukemic; Genes, Wilms Tumor; Hematopoietic Stem Cells; Humans; Imatinib Mesylate; Inositol; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Morpholines; Neoplasm Proteins; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Piperazines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrimidines; Recombinant Fusion Proteins; RNA, Neoplasm; Signal Transduction; Transduction, Genetic; WT1 Proteins

2007