ethylmorphine has been researched along with pentoxyresorufin* in 2 studies
2 other study(ies) available for ethylmorphine and pentoxyresorufin
Article | Year |
---|---|
Evidence for the presence of active cytochrome P450 systems in Schistosoma mansoni and Schistosoma haematobium adult worms.
Extracts of the adult worms of both Schistosoma mansoni and Schistosoma haematobium can metabolise some typical P450 substrates but to differing degrees. S. mansoni worm extracts displayed a approximately 12-fold higher specific activity for an aminopyrine substrate than rat liver microsomes. At 4 mM substrate concentration the demethylation reaction with N-nitrosodimethylamine (NDMA) (5 nmol HCHO/mg protein/min) was only half that of rat liver microsomes, whereas in extracts of S. haematobium, no detectable activity was found towards NDMA. Using ethylmorphine as substrate the demethylation activity of S. mansoni extracts (1.82 nmol HCHO/mg protein/min) was 5.5-fold lower than that of rat liver microsomes. Benzphetamine demethylase activity was also readily detectable in S. mansoni worm extracts at 6.79 nmol HCHO/mg protein/min compared with 10.20 nmol HCHO/mg protein/min in the case of rat liver microsomes. When aniline was used as substrate, surprisingly, no activity was found in worm extracts of either S. mansoni or S. haematobium, whereas rat liver microsomes showed high activity towards this amine. The anti-P450 2E1 and 2B1/2 cross-reacted with both worm homogenates and gave a specific band corresponding to a protein of molecular weight of approximately 50.0 kDa. A study with anti-P450 IVA antibody revealed that while this protein was strongly expressed in S. haematobium worm extracts, no immunoreactivity was observed with extracts of S. mansoni. Immunoblotting analyses with anti-P450 IIIA and P450 1A1 did not detect immunoreactive protein in either S. mansoni or S. haematobium. Topics: Aminopyrine; Aniline Compounds; Animals; Benzphetamine; Cricetinae; Cytochrome P-450 Enzyme System; Dimethylnitrosamine; Enzyme Activation; Ethylmorphine; Female; Formaldehyde; Immunoblotting; Male; Mice; Microsomes, Liver; NADPH-Ferrihemoprotein Reductase; Oxazines; Rats; Schistosoma haematobium; Schistosoma mansoni; Substrate Specificity | 2002 |
Cytochrome P450-dependent drug oxidation activities in liver microsomes of various animal species including rats, guinea pigs, dogs, monkeys, and humans.
Levels of cytochrome P450 (P450 or CYP) proteins immunoreactive to antibodies raised against human CYP1A2, 2A6, 2C9, 2E1, and 3A4, monkey CYP2B17, and rat CYP2D1 were determined in liver microsomes of rats, guinea pigs, dogs, monkeys, and humans. We also examined several drug oxidation activities catalyzed by liver microsomes of these animal species using eleven P450 substrates such as phenacetin, coumarin, pentoxyresorufin, phenytoin, S-mephenytoin, bufuralol, aniline, benzphetamine, ethylmorphine, erythromycin, and nifedipine; the activities were compared with the levels of individual P450 enzymes. Monkey liver P450 proteins were found to have relatively similar immunochemical properties by immunoblotting analysis to the human enzymes, which belong to the same P450 gene families. Mean catalytic activities (on basis of mg microsomal protein) of P450-dependent drug oxidations with eleven substrates were higher in liver microsomes of monkeys than of humans, except that humans showed much higher activities for aniline p-hydroxylation than those catalyzed by monkeys. However, when the catalytic activities of liver microsomes of monkeys and humans were compared on the basis of nmol of P450, both species gave relatively similar rates towards the oxidation of phenacetin, coumarin, pentoxyresorufin, phenytoin, mephenytoin, benzphetamine, ethylmorphine, erythromycin, and nifedipine, while the aniline p-hydroxylation was higher and bufuralol 1'-hydroxylation was lower in humans than monkeys. On the other hand, the immunochemical properties of P450 proteins and the activities of P450-dependent drug oxidation reactions in dogs, guinea pigs, and rats were somewhat different from those of monkeys and humans; the differences in these animal species varied with the P450 enzymes examined and the substrates used. The results presented in this study provide useful information towards species-related differences in susceptibilities of various animal species regarding actions and toxicities of drugs and xenobiotic chemicals. Topics: Adrenergic beta-Antagonists; Aniline Compounds; Animals; Antineoplastic Agents; Benzphetamine; Carcinogens; Coumarins; Cytochrome P-450 Enzyme System; Dogs; Erythromycin; Ethanolamines; Ethylmorphine; Guinea Pigs; Humans; Macaca fascicularis; Mephenytoin; Microsomes, Liver; Nifedipine; Oxazines; Oxidation-Reduction; Phenacetin; Phenytoin; Rats; Species Specificity | 1997 |