estrone-sulfate and formestane

estrone-sulfate has been researched along with formestane* in 2 studies

Reviews

1 review(s) available for estrone-sulfate and formestane

ArticleYear
Enzymatic control of estrogen production in human breast cancer: relative significance of aromatase versus sulfatase pathways.
    Annals of the New York Academy of Sciences, 1986, Volume: 464

    One-third of the cases of breast cancer in postmenopausal women are hormone-dependent and the lesions regress upon treatment with antiestrogens or inhibition of estrogen biosynthesis. In these patients, estrogens are synthesized in extraglandular tissues from adrenal precursors and re-enter plasma to produce estrone levels of 52 +/- 6.5 pg/ml (mean +/- SEM) and estradiol concentrations of 13.1 +/- 0.7 pg/ml. However, the fact that the levels of estrogen in breast tumor tissue are an order of magnitude higher than plasma levels suggested the possibility of in situ estrogen production. To address this possibility, we measured several enzymes involved in estradiol biosynthesis in human tumors. Forty-eight of 61 tumors contained aromatase (estrogen synthetase) activity ranging from 5-80 pg/gm protein per hour. By comparison, the levels of estrone sulfatase were 10(6) higher, ranging from 0.8-125 micrograms/gm protein per hour. Because the sulfatase enzyme was of lower affinity (i.e., Km = 27 microM) than that of aromatase (i.e., 0.027 microM), the amount of estrogen formed under conditions of similar substrate concentrations was compared and found to be 10-fold higher via the sulfatase enzyme. In 41 additional tumors, the 17 beta-hydroxysteroid dehydrogenase enzyme, catalyzing the conversion of estrone to estradiol, was uniformly present. To test the biologic relevance of the estrone sulfate to estrone to estradiol pathway, estrogen-dependent nitrosomethylurea rat mammary tumors were grown in soft agar in the presence of estrone sulfate. Concentrations of estrone sulfate of 10(-6) microM significantly (p less than 0.01) stimulated colony formation in this system in which 75.5-98.6% of estrone sulfate was converted to estrone and 0.2 to 6% to estradiol. These data support the hypothesis that mammary carcinomas can synthesize estradiol in situ from circulating estrogen precursor and that local conversion is biologically important. On the basis of comparative data, the estrone sulfate to estrone to estradiol pathway is quantitatively more important than that involving androstenedione to estrone to estradiol.

    Topics: 17-Hydroxysteroid Dehydrogenases; Adrenalectomy; Aminoglutethimide; Androstenedione; Animals; Aromatase; Breast Neoplasms; Estradiol; Estrogens; Estrone; Female; Humans; Hydrocortisone; Mammary Neoplasms, Experimental; Neoplasms, Hormone-Dependent; Rats; Sulfatases; Testolactone

1986

Other Studies

1 other study(ies) available for estrone-sulfate and formestane

ArticleYear
A sensitive assay for measurement of plasma estrone sulphate in patients on treatment with aromatase inhibitors.
    The Journal of steroid biochemistry and molecular biology, 1995, Volume: 55, Issue:3-4

    A major obstacle to the understanding of the mechanisms of action of aromatase inhibitors in breast cancer is the observation that plasma estrogens are sustained at about 30-50% of their control levels despite 85-95% inhibition of the conversion of tracer androstenedione (A) to estrone (E1). The discrepancy could be due to lack of sensitivity of current RIAs. Due to low levels of plasma estradiol (E2) (mean about 20 pM) and E1 (mean about 75 pM) in postmenopausal women, it is difficult to develop RIA methods with the sensitivity required to detect > 90% suppression from baseline. In contrast, the plasma level of the estrogen conjugate estrone sulphate (E1S) is substantially higher (mean level about 400 pM). This paper describes a new assay to measure plasma E1S in the low range aiming to detect > 95% suppression of E1S from baseline values in patients treated with aromatase inhibitors. E1S was separated from unconjugated estrogens, hydrolysed and purified as unconjugated E1. E1 was subsequently reduced to E2, purified, and measured by a highly sensitive RIA using oestradiol-6-(O-carboxymethyl) oximino-(2(-)[125I]iodohistamine as ligand. The sensitivity limit of the method was 2.7 pM. Patients on treatment with the aromatase inhibitors formestane or aminoglutethimide or both drugs in concert were found to have plasma levels of E1S ranging from 3 to 274 pM with a mean suppression of 78, 86 and 95%, respectively, compared to baseline, a lower suppression than that reported in previous trials with these drugs.

    Topics: Aminoglutethimide; Androstenedione; Antineoplastic Combined Chemotherapy Protocols; Aromatase Inhibitors; Breast Neoplasms; Enzyme Inhibitors; Estrone; Female; Humans; Hydrolysis; Menopause; Radioimmunoassay; Sensitivity and Specificity

1995