esculetin has been researched along with daphnetin* in 4 studies
4 other study(ies) available for esculetin and daphnetin
Article | Year |
---|---|
Hydroxycoumarins: New, effective plant-derived compounds reduce Ralstonia pseudosolanacearum populations and control tobacco bacterial wilt.
Plant wilt disease caused by the soilborne bacterial pathogen Ralstonia pseudosolanacearum is one of the most devastating plant diseases; however, no effective protection against this disease has been developed. Coumarins are important natural plant-derived compounds with a wide range of bioactivities and extensive applications in medicine and agriculture. In the present study, three hydroxycoumarins (Hycs), umbelliferone (UM), esculetin (ES) and daphnetin (DA) significantly inhibited the growth of R. pseudosolanacearum on solid medium in a concentration-dependent manner, and the minimum inhibitory concentration (MICs) of these compounds was 325 mg L Topics: Agriculture; Anti-Bacterial Agents; Chromones; Dimethyl Sulfoxide; Microbial Sensitivity Tests; Microbial Viability; Nicotiana; Pest Control; Phytochemicals; Plant Diseases; Plant Roots; Ralstonia; Umbelliferones | 2018 |
Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells.
Tumor growth and metastasis are closely associated with the M2 macrophage activation of tumor-associated macrophages (TAMs) in the tumor microenvironment as well as the development of tumor cells. In this study, we examined the antiproliferative, antitumor, and antimetastatic effects of three dihydroxycoumarins (esculetin, fraxetin, and daphnetin) against osteosarcoma LM8 cells (in vitro) and a highly metastatic model in LM8-bearing mice (in vivo). Esculetin (20-100μM) inhibited the proliferation of LM8 cells, whereas fraxetin and daphnetin had no effect. Esculetin inhibited the expressions of cyclin D1, cyclin-dependent kinase (CDK) 4 and matrix metalloproteinase (MMP)-2, and production of both transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) in LM8 cells. Esculetin (3 or 10mg/kg) and fraxetin (10mg/kg) inhibited tumor growth and metastasis to the lung or liver, whereas daphnetin did not. These results suggested that the antitumor and antimetastatic actions of esculetin may be partly attributed to G1 arrest by the inhibition of cyclin D1 and CDK4 expression, while its antiangiogenic action may have been due to the inhibition of MMP-2 expression and TGF-β1 and VEGF productions at tumor sites. Esculetin (10-100μM) and fraxetin (50-100μM) inhibited the production of interleukin (IL)-10, monocyte chemoattractant protein (MCP)-1, and TGF-β1 during the differentiation of M2 macrophages by reducing the phosphorylation of Stat 3 without affecting its expression. These results also suggested that the antitumor and antimetastatic actions of esculetin or fraxetin may be due to the regulated activation of TAM by M2 macrophage differentiation in the tumor microenvironment. Topics: Animals; Antineoplastic Agents; Apoptosis; Body Weight; Cell Differentiation; Cell Line, Tumor; Cell Polarity; Cell Proliferation; Chemokine CCL2; Coumarins; Cyclin-Dependent Kinase 4; G1 Phase Cell Cycle Checkpoints; Gene Expression Regulation, Neoplastic; Humans; Interleukin-10; Macrophage Activation; Macrophages; Male; Matrix Metalloproteinase 2; Mice; Neoplasm Metastasis; Osteosarcoma; STAT3 Transcription Factor; Tetradecanoylphorbol Acetate; Transforming Growth Factor beta1; Umbelliferones; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays | 2015 |
Differential effects of esculetin and daphnetin on in vitro cell proliferation and in vivo estrogenicity.
Esculetin (6,7-dihydroxycoumarin) and daphnetin (7,8-dihydroxycoumarin) are secondary metabolites of plants used in folk medicine. These compounds have showed great antiproliferative activity in several tumor cell lines and have been proposed as potential anticancer agents. However, the estrogenic potential of these two compounds has to date not been reported. The present study compared esculetin and daphnetin on the inhibition of cell proliferation and cell cycle progression of the MCF-7 estrogen-responsive human carcinoma cell line. In vivo and in vitro estrogenic activity for both compounds was also evaluated. Esculetin inhibited cell proliferation after 72 h exposure (IC50=193 ± 6.6 μM), while daphnetin evidenced inhibiting effects starting at 24-h exposure (72 h, IC50=73 ± 4.1 μM). Both effects showed changes in cyclin D1 gene expression. In non-estrogenic conditions (E-screening assay), esculetin produced biphasic response on proliferation of the MCF-7 cells; at 10(-8)-10(-6)M, concentrations induced proliferative effects as EC50=4.07 × 10(-9)M (E(2)=2.91 × 10(-12)M); at higher concentrations (10(-5)-10(-4)M), cell proliferation was inhibited. Relative proliferative effect at E(2) was 52% (E(2)=100), relative proliferative potency was 0.072 (E(2)=100). Additionally, esculetin tested in vivo showed estrogenic effects at 50-100mg/kg doses; relative uterotrophic effect at E(2) was 37%, with relative uterotrophic potency registered at 0.003. In contrast, daphnetin did not induce estrogenic effects in vitro or with in vivo models. The low estrogenic activity of esculetin could prove useful in postmenopausal therapy but not as a safe antitumor agent in estrogen-dependent tumors. Daphnetin-based antiproliferative selectivity with MCF-7 cells showed that daphnetin is a promising antitumoral agent also acting on estrogen dependent tumors. Topics: Animals; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; Estrogens; Female; Flow Cytometry; Humans; Mice; Organ Size; Umbelliferones; Uterus | 2011 |
The sensitizing capacity of coumarins (II).
5 coumarins used in perfumery, cosmetics, therapeutic ointments or occurring naturally were investigated by Freund's complete adjuvant technique (FCAT) in guinea pigs to determine their contact sensitizing potency. 4-Methylesculetin was also studied. Esculetin, dihydrocoumarin and daphnetin were found to be moderate to strong sensitizers, while fraxetin was nearly and 7-methylcoumarin completely inactive. The results corroborate the hypothetical view that only those coumarins having a catecholic disubstitution in the benzene ring, e.g., esculetin, 4-methylesculetin, daphnetin, can become sensitizers on the basis that they are capable of forming ortho-quinones under oxidizing conditions. Topics: Animals; Cosmetics; Coumarins; Cross Reactions; Dermatitis, Contact; Female; Freund's Adjuvant; Guinea Pigs; Immunization; Skin Tests; Structure-Activity Relationship; Umbelliferones | 1986 |