esculetin has been researched along with 4-bromophenacyl-bromide* in 2 studies
2 other study(ies) available for esculetin and 4-bromophenacyl-bromide
Article | Year |
---|---|
Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases.
Eicosanoids modulate the interaction of tumor cells with various host components in cancer metastasis. Their synthesis involves the release of arachidonic acid (AA) from cellular phospholipids by phospholipase A2 (PLA2), followed by metabolism by cyclooxygenases (COXs) and lipooxygenases (LOXs). This study aimed to identify the pathway(s) of AA metabolism that are required for the invasion of prostate tumor cells. DU-145 and PC-3 human prostate cancer cell lines were used to test the effect of inhibitors of PLA2, COX, or LOX on the invasion of prostate tumor cells through Matrigel in vitro using the Boyden chamber assay and fibroblast-conditioned medium as the chemoattractant. We used nontoxic doses that did not inhibit simple cell motility and did not decrease clonogenic survival. All of the inhibitors caused a significant reduction in AA release from treated cells compared with control cells, which indicated that the treatments were biochemically active. Invasion through Matrigel was inhibited by the PLA2 inhibitor 4-bromophenacyl bromide (4-BPB), the general COX inhibitor ibuprofen (IB), and the highly selective COX-2 inhibitor NS398. Inhibition of cell invasiveness by 4-BPB (1.0 microM), IB (10.0 microM), and NS398 (10.0 microM) was reversed by the addition of prostaglandin E2 (PGE2). PGE2 alone, however, did not stimulate invasiveness, which suggests that its production is necessary for rendering the cells invasive-permissive but not sufficient for inducing invasiveness. In contrast, we found no significant inhibition of invasion of prostate tumor cells treated with esculetin (1.0 microM) or nordihydroguiaretic acid (1.0 microM), which are specific inhibitors of LOX. We also tested the effect of 4-BPB, IB, NS398, and esculetin on the secretion of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), as key enzymes in the proteolysis of Matrigel during invasion, using gelatin zymograms and Western blots. Cells that received 4-BPB, IB, or NS398, but not esculetin showed a significant reduction in the levels of proMMP-2, MMP-9, and proMMP-9 in the culture medium. DU-145 cells did not secrete TIMP-1, and the drugs did not alter the secretion of TIMP-2. This work highlights the role played by COX in disturbing the balance between MMPs and TIMPs in prostate cancer cells, and it points to the potential use of COX inibitors, especially COX-2 selective inhibitors, in the prevention and therapy of prostate cancer invasion. Topics: 3T3 Cells; Acetophenones; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acid; Cell Movement; Cell Survival; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Dinoprostone; Eicosanoids; Enzyme Inhibitors; Humans; Ibuprofen; Isoenzymes; Lipoxygenase; Lipoxygenase Inhibitors; Male; Matrix Metalloproteinase Inhibitors; Matrix Metalloproteinases; Membrane Proteins; Mice; Neoplasm Invasiveness; Nitrobenzenes; Phospholipases A; Phospholipases A2; Prostaglandin-Endoperoxide Synthases; Prostaglandins; Prostatic Neoplasms; Sulfonamides; Tissue Inhibitor of Metalloproteinases; Tumor Cells, Cultured; Umbelliferones | 2000 |
Inhibition of macrophage nitric oxide production by arachidonate-cascade inhibitors.
We examined whether inhibitors of the arachidonic acid cascade inhibited nitric oxide (NO) production, as measured by nitrite concentration, either in macrophages or by their cytosolic fractions. Nitrite production by peritoneal macrophages from mice receiving OK-432 treatment was significantly inhibited by phospholipase A2 inhibitors [dexamethasone and 4-bromophenacyl bromide (4-BPB)], lipoxygenase inhibitors [nordihydroguaiaretic acid (NDGA) and ketoconazole] and a glutathione S-transferase (leukotrienes LTA4-LTC4) inhibitor (ethacrynic acid). However, caffeic acid and esculetin, inhibitors of 5- and 12-lipoxygenase respectively, were not inhibitory. On the other hand, indomethacin, a cyclooxygenase inhibitor, slightly inhibited whereas another inhibitor, ibuprofen, did not. Inhibition of the nitrite production by dexamethasone, 4-BPB, NDGA and ethacrynic acid was also demonstrated when the macrophages were restimulated ex vivo with OK-432 or with lipopolysaccharide. The inhibitory activity of dexamethasone, NDGA and ethacrynic acid was significantly reduced by ex vivo restimulation with OK-432, whereas that of 4-BPB was hardly affected. Furthermore, the inhibitory activity of dexamethasone, NDGA and ethacrynic acid was much higher when the macrophages were continuously exposed to the agents than when they were pulsed. Meanwhile, inhibition by 4-BPB was almost the same with either treatment. In addition, the inhibitory activity of these agents was not blocked with L-arginine, a substrate of NO synthases, or with arachidonate metabolites (LTB4, LTC4 and LTE4). Ethacrynic acid and 4-BPB, but not dexamethasone and NDGA, also inhibited nitrite production by the cytosolic fractions from OK-432-restimulated peritoneal macrophages, and the inhibitory activity of 4-BPB was superior to that of ethacrynic acid. These agents, however, did not inhibit nitrite production from sodium nitroprusside, a spontaneous NO-releasing compound. These results indicate that dexamethasone, 4-BPB, NDGA and ethacrynic acid inhibited the production of NO by macrophages through at least two different mechanisms: one was inhibited by dexamethasone, NDGA and ethacrynic acid and the other by 4-BPB. Furthermore, 4-BPB and ethacrynic acid directly inhibited the activity of the NO synthase in macrophages, suggesting that the agents work by binding to the active site(s) of the enzyme. Topics: Acetophenones; Amino Acid Oxidoreductases; Animals; Arachidonic Acid; Caffeic Acids; Dexamethasone; Dose-Response Relationship, Drug; Ethacrynic Acid; Glutathione Transferase; Indomethacin; Ketoconazole; Lipoxygenase; Lipoxygenase Inhibitors; Macrophages; Masoprocol; Mice; Mice, Inbred BALB C; Nitric Oxide; Nitric Oxide Synthase; Phospholipases A; Phospholipases A2; Sodium Nitrite; Umbelliferones | 1993 |