erythromycin has been researched along with riboflavin in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (33.33) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 3 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Abdeen, S; Chapman, E; Chitre, S; Hoang, QQ; Johnson, SM; Park, Y; Ray, AM; Salim, N; Sivinski, J; Stevens, M; Washburn, A | 1 |
Velizhenko, GG | 1 |
Baldwin, JN; Yu, L | 1 |
1 review(s) available for erythromycin and riboflavin
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
5 other study(ies) available for erythromycin and riboflavin
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
Topics: | 2008 |
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
Topics: Biological Products; Chaperonin 10; Chaperonin 60; Escherichia coli; Humans; Inhibitory Concentration 50; Protein Folding; Rafoxanide; Salicylanilides; Suramin | 2019 |
[Effect of thiamine, riboflavin and ascorbic acid on tetracycline, erythromycin and levomycetin activity].
Topics: Ascorbic Acid; Bacterial Proteins; Chloramphenicol; Culture Media; Depression, Chemical; Drug Interactions; Erythromycin; Riboflavin; Staphylococcus aureus; Tetracycline; Thiamine | 1975 |
Intraspecific transduction in Staphylococcus epidermidis and interspecific transduction between Staphylococcus aureus and Staphylococcus epidermidis.
Topics: Adenine; Deoxyribonucleases; Erythromycin; Mitomycins; Novobiocin; Penicillin Resistance; Penicillins; Radiation Effects; Riboflavin; Species Specificity; Staphylococcus; Staphylococcus Phages; Streptomycin; Transduction, Genetic; Ultraviolet Rays | 1971 |