erucylphosphocholine has been researched along with miltefosine* in 8 studies
1 review(s) available for erucylphosphocholine and miltefosine
Article | Year |
---|---|
Anticancer mechanisms and clinical application of alkylphospholipids.
Synthetic alkylphospholipids (ALPs), such as edelfosine, miltefosine, perifosine, erucylphosphocholine and erufosine, represent a relatively new class of structurally related antitumor agents that act on cell membranes rather than on DNA. They selectively target proliferating (tumor) cells, inducing growth arrest and apoptosis, and are potent sensitizers of conventional chemo- and radiotherapy. ALPs easily insert in the outer leaflet of the plasma membrane and cross the membrane via an ATP-dependent CDC50a-containing 'flippase' complex (in carcinoma cells), or are internalized by lipid raft-dependent endocytosis (in lymphoma/leukemic cells). ALPs resist catabolic degradation, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. At the same time, stress pathways (e.g. stress-activated protein kinase/JNK) are activated to promote apoptosis. In many preclinical and clinical studies, perifosine was the most effective ALP, mainly because it inhibits Akt activity potently and consistently, also in vivo. This property is successfully exploited clinically in highly malignant tumors, such as multiple myeloma and neuroblastoma, in which a tyrosine kinase receptor/Akt pathway is amplified. In such cases, perifosine therapy is most effective in combination with conventional anticancer regimens or with rapamycin-type mTOR inhibitors, and may overcome resistance to these agents. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Membrane; Endocytosis; Humans; Neoplasms; Organophosphates; Phosphatidylinositol 3-Kinase; Phosphoinositide-3 Kinase Inhibitors; Phospholipid Ethers; Phosphorylcholine; Proto-Oncogene Proteins c-akt; Quaternary Ammonium Compounds; Signal Transduction | 2013 |
7 other study(ies) available for erucylphosphocholine and miltefosine
Article | Year |
---|---|
Affinity of alkylphosphocholines to biological membrane of prostate cancer: studies in natural and model systems.
The effectiveness of two alkylphosphocholines (APCs), hexadecylphosphocholine (miltefosine) and erucylphosphocholine to combat prostate cancer has been studied in vitro with artificial cancerous membrane, modelled with the Langmuir monolayer technique, and on cell line (Du-145). Studies performed with the Langmuir method indicate that both the investigated drugs have the affinity to the monolayer mimicking prostate cancer membrane (composed of cholesterol:POPC = 0.428) and the drug-membrane interactions are stronger for erucylphosphocholine as compared to hexadecylphosphocholine. Moreover, both studied drugs were found to fluidize the model membrane, which may lead to apoptosis. Indeed, biological studies confirmed that in Du-145 cell line both investigated alkylphosphocholines cause cell death primarily by apoptosis while necrotic cells constitute only a small percentage of APC-treated cells. Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Membrane; Humans; Male; Models, Biological; Phosphorylcholine; Prostatic Neoplasms | 2014 |
In vitro and in vivo anti-schistosomal activity of the alkylphospholipid analog edelfosine.
Schistosomiasis is a parasitic disease caused by trematodes of the genus Schistosoma. Five species of Schistosoma are known to infect humans, out of which S. haematobium is the most prevalent, causing the chronic parasitic disease schistosomiasis that still represents a major problem of public health in many regions of the world and especially in tropical areas, leading to serious manifestations and mortality in developing countries. Since the 1970s, praziquantel (PZQ) is the drug of choice for the treatment of schistosomiasis, but concerns about relying on a single drug to treat millions of people, and the potential appearance of drug resistance, make identification of alternative schistosomiasis chemotherapies a high priority. Alkylphospholipid analogs (APLs), together with their prototypic molecule edelfosine (EDLF), are a family of synthetic antineoplastic compounds that show additional pharmacological actions, including antiparasitic activities against several protozoan parasites.. We found APLs ranked edelfosine> perifosine> erucylphosphocholine> miltefosine for their in vitro schistosomicidal activity against adult S. mansoni worms. Edelfosine accumulated mainly in the worm tegument, and led to tegumental alterations, membrane permeabilization, motility impairment, blockade of male-female pairing as well as induction of apoptosis-like processes in cells in the close vicinity to the tegument. Edelfosine oral treatment also showed in vivo schistosomicidal activity and decreased significantly the egg burden in the liver, a key event in schistosomiasis.. Our data show that edelfosine is the most potent APL in killing S. mansoni adult worms in vitro. Edelfosine schistosomicidal activity seems to depend on its action on the tegumental structure, leading to tegumental damage, membrane permeabilization and apoptosis-like cell death. Oral administration of edelfosine diminished worm and egg burdens in S. mansoni-infected CD1 mice. Here we report that edelfosine showed promising antischistosomal properties in vitro and in vivo. Topics: Animals; Antineoplastic Agents; Antiparasitic Agents; Apoptosis; Female; Mice; Phospholipid Ethers; Phosphorylcholine; Schistosoma mansoni; Schistosomiasis mansoni | 2014 |
Caenorhabditis elegans as a platform to study the mechanism of action of synthetic antitumor lipids.
Drugs capable of specifically recognizing and killing cancer cells while sparing healthy cells are of great interest in anti-cancer therapy. An example of such a drug is edelfosine, the prototype molecule of a family of synthetic lipids collectively known as antitumor lipids (ATLs). A better understanding of the selectivity and the mechanism of action of these compounds would lead to better anticancer treatments. Using Caenorhabditis elegans, we modeled key features of the ATL selectivity against cancer cells. Edelfosine induced a selective and direct killing action on C. elegans embryos, which was dependent on cholesterol, without affecting adult worms and larvae. Distinct ATLs ranked differently in their embryonic lethal effect with edelfosine > perifosine > erucylphosphocholine >> miltefosine. Following a biased screening of 57 C. elegans mutants we found that inactivation of components of the insulin/IGF-1 signaling pathway led to resistance against the ATL edelfosine in both C. elegans and human tumor cells. This paper shows that C. elegans can be used as a rapid platform to facilitate ATL research and to further understand the mechanism of action of edelfosine and other synthetic ATLs. Topics: Animals; Antineoplastic Agents; Apoptosis; Caenorhabditis elegans; Cell Line, Tumor; Cholesterol; Drug Resistance; Embryo, Nonmammalian; Embryonic Development; Humans; Insulin-Like Growth Factor I; Larva; Membrane Microdomains; Phospholipid Ethers; Phosphorylcholine | 2014 |
BCR-ABL influences the antileukaemic efficacy of alkylphosphocholines.
We have compared the antileukaemic efficacy of a series of new i.v. injectable alkylphosphocholines (APC) with their clinically used congeners miltefosine and perifosine. The test system consisted of four leukaemic cell lines carrying the bcr-abl rearrangement (K-562, LAMA-84, CML-T1 and BV-173) and two other leukaemic cell lines (HL-60 and SKW-3) without this genetic alteration. The prototype of i.v. injectable APC, erucylphosphocholine, was more active against BCR-ABL-positive cell lines than the two reference APC. It induced programmed cell death in HL-60 and SKW-3 cells after exposure for 24 h, and in bcr-abl expressing cells after a prolonged incubation period (48 h). LAMA-84 cells responded to i.v. injectable APC with increased conversion to an adherent, fibroblast-like phenotype. Experiments with a cell-free system showed that the target structures of APC are localized within the cytoplasmic compartment. Blockade of ceramide synthase by fumonisin B1 was insufficient to prevent oligonucleosomal DNA fragmentation. Using RT-PCR we confirmed that K-562 and LAMA-84 cells carry the b3a2 fusion type, and CML-T1 and BV-173 the b2a2 variant. BV-173 cells had the lowest level of bcr-abl mRNA which correlated with their increased sensitivity. Transfection of K-562 cells with antisense oligonucleotides directed against bcr-abl caused a specific suppression of K-562 clonogenicity. Our data indicated that i.v. injectable alkylphosphocholines are potent inducers of apoptosis and display increased antileukaemic efficacy against BCR-ABL-positive blasts as compared with miltefosine and perifosine. The expression of BCR-ABL cannot prevent apoptosis but delays erucylphosphocholine-induced programmed cell death. Transfection with bcr-abl directed antisense oligonucleotides reduces the clonogenicity of K-562 cells. Topics: Apoptosis; Cell Adhesion; Cell Survival; Dose-Response Relationship, Drug; Fusion Proteins, bcr-abl; HL-60 Cells; Humans; Molecular Structure; Phosphorylcholine; Structure-Activity Relationship; Tumor Cells, Cultured | 1999 |
Systemic administration of alkylphosphocholines. Erucylphosphocholine and liposomal hexadecylphosphocholine.
Topics: Administration, Oral; Animals; Antineoplastic Agents; Area Under Curve; Half-Life; Injections, Intravenous; Liposomes; Mammary Neoplasms, Experimental; Phosphorylcholine; Rats; Rats, Sprague-Dawley; Rats, Wistar; Tumor Cells, Cultured | 1996 |
Comparison of the tissue distribution of hexadecylphosphocholine and erucylphosphocholine.
Topics: Animals; Antineoplastic Agents; Female; Phosphorylcholine; Rats; Rats, Wistar; Tissue Distribution | 1992 |
Alkylphosphocholines: influence of structural variation on biodistribution at antineoplastically active concentrations.
Hexadecylphosphocholine (HPC) and octadecylphosphocholine (OPC) show very potent antitumor activity against autochthonous methylnitrosourea-induced mammary carcinomas in rats. The longer-chain and unsaturated homologue erucylphosphocholine (EPC) forms lamellar structures rather than micelles, but nonetheless exhibits antineoplastic activity. Methylnitrosourea was used in the present study to induce autochthonous mammary carcinomas in virgin Sprague-Dawley rats. At 6 and 11 days following oral therapy, the biodistribution of HPC, OPC and EPC was analyzed in the serum, tumor, liver, kidney, lung, small intestine, brain and spleen of rats by high-performance thin-layer chromatography. In contrast to the almost identical tumor response noted, the distribution of the three homologues differed markedly. The serum levels of 50 nmol/ml obtained for OPC and EPC were much lower than the value of 120 nmol/ml measured for HPC. Nevertheless, the quite different serum levels resulted in similar tumor concentrations of about 200 nmol/g for all three of the compounds. Whereas HPC preferably accumulated in the kidney (1 mumol/g), OPC was found at increased concentrations (400 nmol/g) in the spleen, kidney and lung. In spite of the high daily dose of 120 mumol/kg EPC as compared with 51 mumol/kg HPC or OPC, EPC concentrations (100-200 nmol/g) were low in most tissues. High EPC concentrations were found in the small intestine (628 nmol/g). Values of 170 nmol/g were found for HPC and OPC in the brain, whereas the EPC concentration was 120 nmol/g. Obviously, structural modifications in the alkyl chain strongly influence the distribution pattern of alkylphosphocholines in animals. Since EPC yielded the highest tissue-to-serum concentration ratio in tumor tissue (5.1) and the lowest levels in other organs, we conclude that EPC is the most promising candidate for drug development in cancer therapy. Topics: Animals; Antineoplastic Agents; Cell Division; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Male; Mammary Neoplasms, Experimental; Methylnitrosourea; Phosphatidylcholines; Phosphorylcholine; Rats; Rats, Inbred Strains; Structure-Activity Relationship; Tissue Distribution | 1992 |