erlotinib hydrochloride has been researched along with quinidine in 2 studies
Studies (erlotinib hydrochloride) | Trials (erlotinib hydrochloride) | Recent Studies (post-2010) (erlotinib hydrochloride) | Studies (quinidine) | Trials (quinidine) | Recent Studies (post-2010) (quinidine) |
---|---|---|---|---|---|
4,353 | 786 | 3,033 | 6,608 | 387 | 594 |
Protein | Taxonomy | erlotinib hydrochloride (IC50) | quinidine (IC50) |
---|---|---|---|
Voltage-dependent L-type calcium channel subunit alpha-1F | Homo sapiens (human) | 6.4 | |
Cholinesterase | Homo sapiens (human) | 1.23 | |
ATP-dependent translocase ABCB1 | Mus musculus (house mouse) | 10 | |
ATP-dependent translocase ABCB1 | Homo sapiens (human) | 3.32 | |
Cytochrome P450 2D26 | Rattus norvegicus (Norway rat) | 2.8 | |
Cytochrome P450 2D6 | Homo sapiens (human) | 0.3532 | |
Potassium voltage-gated channel subfamily A member 5 | Homo sapiens (human) | 7.3 | |
Cholinesterase | Equus caballus (horse) | 7.37 | |
Voltage-dependent L-type calcium channel subunit alpha-1D | Homo sapiens (human) | 6.4 | |
Potassium voltage-gated channel subfamily H member 2 | Homo sapiens (human) | 0.7882 | |
Voltage-dependent L-type calcium channel subunit alpha-1S | Homo sapiens (human) | 6.4 | |
Voltage-dependent L-type calcium channel subunit alpha-1C | Homo sapiens (human) | 6.4 | |
Sodium channel protein type 5 subunit alpha | Homo sapiens (human) | 6.9 | |
Potassium voltage-gated channel subfamily D member 2 | Rattus norvegicus (Norway rat) | 2.2 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Fuse, E; Kodaira, H; Kusuhara, H; Sugiyama, Y; Ushiki, J | 1 |
Fujita, T; Fuse, E; Kodaira, H; Kusuhara, H; Sugiyama, Y; Ushiki, J | 1 |
2 other study(ies) available for erlotinib hydrochloride and quinidine
Article | Year |
---|---|
Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone.
Topics: Algorithms; Animals; Antimalarials; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Blood-Brain Barrier; Brain; Dantrolene; Erlotinib Hydrochloride; Flavonoids; Kinetics; Male; Mice; Mice, Knockout; Mitoxantrone; Muscle Relaxants, Central; Neoplasm Proteins; Piperidines; Protein Kinase Inhibitors; Quinazolines; Quinidine; Testis; Tissue Distribution; Xenobiotics | 2010 |
Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a
Topics: Animals; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport, Active; Biomarkers; Blood-Brain Barrier; Brain; Dogs; Erlotinib Hydrochloride; Female; Humans; Male; Mice; Mice, Knockout; Neoplasm Proteins; Protein Binding; Quinazolines; Quinidine; Rats | 2011 |