erlotinib hydrochloride has been researched along with (5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol in 2 studies
Studies (erlotinib hydrochloride) | Trials (erlotinib hydrochloride) | Recent Studies (post-2010) (erlotinib hydrochloride) | Studies ((5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol) | Trials ((5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol) | Recent Studies (post-2010) ((5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol) |
---|---|---|---|---|---|
4,353 | 786 | 3,033 | 141 | 3 | 138 |
Protein | Taxonomy | erlotinib hydrochloride (IC50) | (5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol (IC50) |
---|---|---|---|
Phosphatidylinositol 3-kinase regulatory subunit alpha | Homo sapiens (human) | 5.577 | |
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform | Homo sapiens (human) | 4.5885 | |
Serine/threonine-protein kinase mTOR | Homo sapiens (human) | 0.0179 | |
Rapamycin-insensitive companion of mTOR | Homo sapiens (human) | 0.0028 | |
Regulatory-associated protein of mTOR | Homo sapiens (human) | 0.0139 | |
Target of rapamycin complex 2 subunit MAPKAP1 | Homo sapiens (human) | 0.0028 | |
Target of rapamycin complex subunit LST8 | Homo sapiens (human) | 0.0102 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Geng, L; Liu, Y; Wang, G; Wei, F; Zhang, P; Zhang, Y | 1 |
Aoki, M; Fujishita, T; Kajino-Sakamoto, R; Kojima, Y; Taketo, MM | 1 |
2 other study(ies) available for erlotinib hydrochloride and (5-(2,4-bis((3s)-3-methylmorpholin-4-yl)pyrido(2,3-d)pyrimidin-7-yl)-2-methoxyphenyl)methanol
Article | Year |
---|---|
mTOR inhibition induces EGFR feedback activation in association with its resistance to human pancreatic cancer.
Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; ErbB Receptors; Erlotinib Hydrochloride; Female; Forkhead Transcription Factors; Humans; Morpholines; Pancreatic Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quinazolines; Signal Transduction; TOR Serine-Threonine Kinases; Tumor Burden; Up-Regulation; Xenograft Model Antitumor Assays | 2015 |
Tumor microenvironment confers mTOR inhibitor resistance in invasive intestinal adenocarcinoma.
Topics: Adenocarcinoma; Animals; Antineoplastic Agents; Blotting, Western; Cell Line, Tumor; Disease Models, Animal; Drug Resistance, Neoplasm; ErbB Receptors; Erlotinib Hydrochloride; Everolimus; Gene Expression Regulation, Neoplastic; HCT116 Cells; HT29 Cells; Humans; Intestinal Neoplasms; MAP Kinase Signaling System; Mice, 129 Strain; Mice, Inbred C57BL; Morpholines; Neoplasm Invasiveness; Sirolimus; TOR Serine-Threonine Kinases; Tumor Microenvironment | 2017 |