eriodictyol has been researched along with tamarixetin in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 5 (83.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Adelekan, AM; Hussein, AA; Liles, DC; Meyer, JJ; Prozesky, EA; Rodríguez, B; Ureña, LD; van Rooyen, PH | 1 |
Itoh, T; Sakakibara, H; Shimoi, K; Takemura, H; Yamamoto, K | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM | 1 |
Daikonya, A; Iijima, H; Jiang, WJ; Kitanaka, S; Nemoto, T; Noritake, R; Ohkawara, M; Takamiya, T | 1 |
Amesty, Á; Burgueño-Tapia, E; Estévez-Braun, A; Joseph-Nathan, P; Ravelo, ÁG | 1 |
6 other study(ies) available for eriodictyol and tamarixetin
Article | Year |
---|---|
Bioactive diterpenes and other constituents of Croton steenkampianus.
Topics: Animals; Antimalarials; Chlorocebus aethiops; Chloroquine; Croton; Diterpenes; Drug Resistance; Indans; Molecular Conformation; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Plasmodium falciparum; South Africa; Vero Cells; X-Ray Diffraction | 2008 |
Selective inhibition of methoxyflavonoids on human CYP1B1 activity.
Topics: Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Flavonoids; Humans; Models, Molecular; Structure-Activity Relationship | 2010 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship | 2015 |
Structure-activity relationship of the inhibitory effects of flavonoids on nitric oxide production in RAW264.7 cells.
Topics: Animals; Biological Products; Dose-Response Relationship, Drug; Flavonoids; Mice; Models, Molecular; Molecular Structure; Nitric Oxide; RAW 264.7 Cells; Rhodiola; Sophora; Structure-Activity Relationship | 2017 |
Benzodihydrofurans from Cyperus teneriffae.
Topics: Benzofurans; Circular Dichroism; Cyperus; Molecular Structure; Plant Roots | 2011 |