Page last updated: 2024-08-21

eriodictyol and kaempferide

eriodictyol has been researched along with kaempferide in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (20.00)18.2507
2000's1 (20.00)29.6817
2010's2 (40.00)24.3611
2020's1 (20.00)2.80

Authors

AuthorsStudies
Habtemariam, S1
Karioti, A; Konstantinopoulou, M; Skaltsa, H; Skaltsas, S1
Itoh, T; Sakakibara, H; Shimoi, K; Takemura, H; Yamamoto, K1
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM1
Ding, H; Dong, H; Hou, Z; Luo, C; Min, W; Qi, L; Wang, L; Xie, S; Yang, P; Yuan, K; Zhang, F1

Other Studies

5 other study(ies) available for eriodictyol and kaempferide

ArticleYear
Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells.
    Journal of natural products, 1997, Volume: 60, Issue:8

    Topics: Animals; Apoptosis; Drug Synergism; Flavonoids; Mice; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha

1997
Sesquiterpene lactones from Anthemis altissima and their anti-Helicobacter pylori activity.
    Journal of natural products, 2003, Volume: 66, Issue:5

    Topics: Asteraceae; Gram-Negative Bacteria; Gram-Positive Bacteria; Greece; Helicobacter pylori; Lactones; Microbial Sensitivity Tests; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Plants, Medicinal; Sesquiterpenes; Stereoisomerism

2003
Selective inhibition of methoxyflavonoids on human CYP1B1 activity.
    Bioorganic & medicinal chemistry, 2010, Sep-01, Volume: 18, Issue:17

    Topics: Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Flavonoids; Humans; Models, Molecular; Structure-Activity Relationship

2010
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship

2015
Computational discovery and biological evaluation of novel inhibitors targeting histone-lysine N-methyltransferase SET7.
    Bioorganic & medicinal chemistry, 2020, 04-01, Volume: 28, Issue:7

    Topics: Antineoplastic Agents; Catalytic Domain; Cell Line, Tumor; Cell Survival; Computational Chemistry; Computer Simulation; Drug Discovery; Escherichia coli; Histone-Lysine N-Methyltransferase; Humans; Molecular Structure; Protein Binding; Protein Conformation; Structure-Activity Relationship

2020