eriodictyol has been researched along with genistein in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 4 (66.67) | 24.3611 |
2020's | 1 (16.67) | 2.80 |
Authors | Studies |
---|---|
Asao, Y; Matsuda, H; Miyagawa, K; Nakashima, S; Takayama, S; Xu, F; Yoshida, K; Yoshikawa, M | 1 |
Amić, D; Lucić, B | 1 |
Kogami, Y; Matsuda, H; Nakamura, S; Sugiyama, T; Ueno, T; Yoshikawa, M | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Golonko, A; Lazny, R; Lewandowski, W; Pienkowski, T; Roszko, M; Swislocka, R | 1 |
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V | 1 |
1 review(s) available for eriodictyol and genistein
Article | Year |
---|---|
Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
Topics: Animals; Diet; Humans; Neoplasms; Phenols; Polyphenols; Proteasome Endopeptidase Complex; Ubiquitin | 2019 |
5 other study(ies) available for eriodictyol and genistein
Article | Year |
---|---|
Rotenoids and flavonoids with anti-invasion of HT1080, anti-proliferation of U937, and differentiation-inducing activity in HL-60 from Erycibe expansa.
Topics: Cell Differentiation; Cell Proliferation; Convolvulaceae; Enzyme Precursors; Fibrosarcoma; Flavonoids; Gelatinases; HL-60 Cells; Humans; Matrix Metalloproteinase 9; Metalloendopeptidases; Neoplasm Invasiveness; Plant Extracts; Rotenone; Tumor Cells, Cultured; U937 Cells | 2007 |
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics | 2010 |
Structural requirements of flavonoids for the adipogenesis of 3T3-L1 cells.
Topics: 3T3-L1 Cells; Adipogenesis; Animals; CCAAT-Enhancer-Binding Protein-alpha; CCAAT-Enhancer-Binding Protein-beta; CCAAT-Enhancer-Binding Protein-delta; Deoxyglucose; Fatty Acid-Binding Proteins; Flavonoids; Glucose Transporter Type 4; Mice; PPAR gamma; Structure-Activity Relationship | 2011 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins | 2020 |