eriodictyol has been researched along with diosmetin in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 8 (88.89) | 24.3611 |
2020's | 1 (11.11) | 2.80 |
Authors | Studies |
---|---|
Itoh, T; Sakakibara, H; Shimoi, K; Takemura, H; Yamamoto, K | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM | 1 |
Daikonya, A; Iijima, H; Jiang, WJ; Kitanaka, S; Nemoto, T; Noritake, R; Ohkawara, M; Takamiya, T | 1 |
Chakraborty, A; Chakraborty, M; Frye, SV; Gu, C; Pearce, KH; Puhl-Rubio, AC; Shears, SB; Stashko, MA; Wang, H; Wang, X | 1 |
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V | 1 |
Fernandes, E; Freitas, M; Porto, G; Ribeiro, D; Silva, AM; Tomé, SM | 1 |
Cabrita, EJ; Fernandes, E; Freitas, M; Marques, MM; Porto, G; Ribeiro, D; Silva, AM; Tomé, SM | 1 |
Kang, Y; Kim, BG; Kim, S; Lee, Y; Yoon, Y | 1 |
9 other study(ies) available for eriodictyol and diosmetin
Article | Year |
---|---|
Selective inhibition of methoxyflavonoids on human CYP1B1 activity.
Topics: Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Flavonoids; Humans; Models, Molecular; Structure-Activity Relationship | 2010 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship | 2015 |
Structure-activity relationship of the inhibitory effects of flavonoids on nitric oxide production in RAW264.7 cells.
Topics: Animals; Biological Products; Dose-Response Relationship, Drug; Flavonoids; Mice; Models, Molecular; Molecular Structure; Nitric Oxide; RAW 264.7 Cells; Rhodiola; Sophora; Structure-Activity Relationship | 2017 |
Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis.
Topics: Binding Sites; Crystallography, X-Ray; HCT116 Cells; Humans; Inositol Phosphates; Molecular Structure; Phosphotransferases (Alcohol Group Acceptor); Phosphotransferases (Phosphate Group Acceptor); Protein Binding; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quercetin; Structure-Activity Relationship | 2019 |
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins | 2020 |
Modulation of human neutrophils' oxidative burst by flavonoids.
Topics: Flavonoids; Humans; Luminescent Measurements; Molecular Structure; Neutrophils; Oxidation-Reduction | 2013 |
Inhibition of LOX by flavonoids: a structure-activity relationship study.
Topics: Dose-Response Relationship, Drug; Flavonoids; Glycine max; Humans; Leukotriene B4; Lipoxygenase; Molecular Structure; Neutrophils; Structure-Activity Relationship | 2014 |
Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain.
Topics: 3-Phosphoinositide-Dependent Protein Kinases; Binding Sites; Flavones; Flavonoids; Flavonols; Liposomes; Molecular Docking Simulation; Phosphatidylinositol Phosphates; Pleckstrin Homology Domains; Protein Binding; Quantitative Structure-Activity Relationship | 2017 |