Page last updated: 2024-08-21

eriodictyol and 3-methylquercetin

eriodictyol has been researched along with 3-methylquercetin in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (10.00)29.6817
2010's9 (90.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Karioti, A; Konstantinopoulou, M; Skaltsa, H; Skaltsas, S1
Amić, D; Lucić, B1
Itoh, T; Sakakibara, H; Shimoi, K; Takemura, H; Yamamoto, K1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Bücherl, D; Decker, M; Heilmann, J; Kling, B; Matysik, FM; Palatzky, P; Wegener, J1
Li, J; Li, N; Ling, J; Tang, Y; Wang, W; Zhang, N; Zhang, P; Zhang, X1
Bilia, AR; Carta, F; Ceruso, M; Karioti, A; Supuran, CT1
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM1
Chakraborty, A; Chakraborty, M; Frye, SV; Gu, C; Pearce, KH; Puhl-Rubio, AC; Shears, SB; Stashko, MA; Wang, H; Wang, X1
Andrade, JKS; de Oliveira, CS; Denadai, M; Narain, N; Nunes, ML1

Other Studies

10 other study(ies) available for eriodictyol and 3-methylquercetin

ArticleYear
Sesquiterpene lactones from Anthemis altissima and their anti-Helicobacter pylori activity.
    Journal of natural products, 2003, Volume: 66, Issue:5

    Topics: Asteraceae; Gram-Negative Bacteria; Gram-Positive Bacteria; Greece; Helicobacter pylori; Lactones; Microbial Sensitivity Tests; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Plants, Medicinal; Sesquiterpenes; Stereoisomerism

2003
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Selective inhibition of methoxyflavonoids on human CYP1B1 activity.
    Bioorganic & medicinal chemistry, 2010, Sep-01, Volume: 18, Issue:17

    Topics: Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Flavonoids; Humans; Models, Molecular; Structure-Activity Relationship

2010
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Flavonoids, flavonoid metabolites, and phenolic acids inhibit oxidative stress in the neuronal cell line HT-22 monitored by ECIS and MTT assay: a comparative study.
    Journal of natural products, 2014, Mar-28, Volume: 77, Issue:3

    Topics: Animals; Cells, Cultured; Dose-Response Relationship, Drug; Flavonoids; Hippocampus; Hydroxybenzoates; Mice; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Oxidative Stress; Quercetin

2014
Potential therapeutic agents for circulatory diseases from Bauhinia glauca Benth.subsp. pernervosa. (Da Ye Guan Men).
    Bioorganic & medicinal chemistry letters, 2015, Aug-15, Volume: 25, Issue:16

    Topics: Animals; Bauhinia; Blood Platelets; Flavonoids; In Vitro Techniques; Magnetic Resonance Spectroscopy; Male; Medicine, Chinese Traditional; Plant Extracts; Platelet Aggregation; Platelet Aggregation Inhibitors; Rats; Structure-Activity Relationship

2015
New natural product carbonic anhydrase inhibitors incorporating phenol moieties.
    Bioorganic & medicinal chemistry, 2015, Nov-15, Volume: 23, Issue:22

    Topics: Biological Products; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Humans; Isoenzymes; Kinetics; Phenol; Protein Binding; Quercus; Salvia; Structure-Activity Relationship

2015
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship

2015
Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis.
    Journal of medicinal chemistry, 2019, 02-14, Volume: 62, Issue:3

    Topics: Binding Sites; Crystallography, X-Ray; HCT116 Cells; Humans; Inositol Phosphates; Molecular Structure; Phosphotransferases (Alcohol Group Acceptor); Phosphotransferases (Phosphate Group Acceptor); Protein Binding; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Quercetin; Structure-Activity Relationship

2019
Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region.
    Food research international (Ottawa, Ont.), 2017, Volume: 101

    Topics: Antioxidants; Benzaldehydes; Brazil; Chromatography, High Pressure Liquid; Color; Flavanones; Flavones; Flavonoids; Gallic Acid; Hydroxybenzoates; Phenols; Phenylpropionates; Propolis; Quercetin; Tandem Mass Spectrometry; Vanillic Acid

2017