ergoline and besonprodil

ergoline has been researched along with besonprodil* in 3 studies

Other Studies

3 other study(ies) available for ergoline and besonprodil

ArticleYear
Striatal Akt/GSK3 signaling pathway in the development of L-Dopa-induced dyskinesias in MPTP monkeys.
    Progress in neuro-psychopharmacology & biological psychiatry, 2010, Apr-16, Volume: 34, Issue:3

    L-Dopa treatment, the gold standard therapy for Parkinson's disease, is hampered by motor complications such as dyskinesias. Recently, impairment of striatal Akt/GSK3 signaling was proposed to play a role in the mechanisms implicated in development of L-Dopa-induced dyskinesias in a rodent model of Parkinson's disease. The present experiment investigated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys, the effects on Akt/GSK3 of chronic L-Dopa treatment inducing dyskinesias compared to L-Dopa with CI-1041 (NMDA receptor antagonist) or a low dose of cabergoline (dopamine D2 receptor agonist) preventing dyskinesias. The extensive dopamine denervation induced by MPTP was associated with a decrease by about half of phosphorylated Akt(Ser473) levels in posterior caudate nucleus, anterior and posterior putamen; smaller changes were observed for phosphorylated Akt(Thr308) levels that did not reach statistical significance. Dopamine depletion reduced phosphorylated GSK3beta(Ser9) levels, mainly in posterior putamen whereas pGSK3beta(Tyr216) and pGSK3alpha(Ser21) were unchanged. In posterior caudate nucleus, anterior and posterior putamen of dyskinetic L-Dopa-treated MPTP monkeys, pAkt(Ser473) and pGSK3beta(Ser9) were elevated whereas L-Dopa+cabergoline treated MPTP monkeys without dyskinesias had lower values in posterior striatum as vehicle-treated MPTP monkeys. In non-dyskinetic MPTP monkeys treated with L-Dopa+CI-1041, putamen pAkt(Ser473) and pGSK3beta(Ser9) levels remained elevated as in dyskinetic monkeys while in posterior caudate nucleus, these levels were low as vehicle-treated and lower than L-Dopa treated MPTP monkeys. Extent of phosphorylation of Akt and GSK3beta in putamen correlated positively with dyskinesias scores of MPTP monkeys; these correlations were higher with dopaminergic drugs (L-Dopa, cabergoline) suggesting implication of additional mechanisms and/or signaling molecules in the NMDA antagonist antidyskinetic effect. In conclusion, our results showed that in MPTP monkeys, loss of striatal dopamine decreased Akt/GSK3 signaling and that increased phosphorylation of Akt and GSK3beta was associated with L-Dopa-induced dyskinesias.

    Topics: Animals; Antiparkinson Agents; Benzoxazoles; Cabergoline; Corpus Striatum; Disease Models, Animal; Drug Interactions; Dyskinesia, Drug-Induced; Enzyme Inhibitors; Ergolines; Female; Glycogen Synthase Kinase 3; Levodopa; Macaca fascicularis; Oncogene Protein v-akt; Parkinsonian Disorders; Phosphorylation; Piperidines; Serine; Signal Transduction; Statistics as Topic

2010
Changes of AMPA receptors in MPTP monkeys with levodopa-induced dyskinesias.
    Neuroscience, 2010, Jun-02, Volume: 167, Issue:4

    Overactivity of glutamate neurotransmission is suspected to be implicated in Parkinson's disease and levodopa-induced dyskinesia. The fast glutamatergic transmission in the striatum from the cortex is mediated mainly by non-n-methyl-d-aspartate (non-NMDA) receptors. Animal models of Parkinson's disease reveal conflicting data concerning striatal glutamate AMPA receptors. The present study thus sought to shed light on the relationship of striatal AMPA receptors to the development of levodopa-induced dyskinesia. [(3)H]Ro 48-8587, a highly potent and selective-specific antagonist ligand for AMPA receptors, was used to investigate, by autoradiography, striatal AMPA receptors in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys treated for 1 month with levodopa alone, levodopa+CI-1041 (NMDA receptor antagonist) or levodopa+cabergoline (D2 receptor agonist). Levodopa-treated MPTP monkeys developed dyskinesias while those that received levodopa+CI-1041 or levodopa+cabergoline did not. In the anterior caudate nucleus and putamen, specific binding of [(3)H]Ro 48-8587 was reduced in all MPTP-treated monkeys compared to control monkeys, but no significant effect of MPTP was measured in the posterior striatum. In dyskinetic monkeys, specific binding of [(3)H]Ro 48-8587 was elevated in subregions of the posterior caudate nucleus and putamen as compared to saline-treated MPTP monkeys. Levodopa+CI-1041 treatment left unchanged specific binding of [(3)H]Ro 48-8587 whereas levodopa+cabergoline treatment reduced it in subregions of the posterior caudate nucleus and putamen compared to control and levodopa-treated MPTP monkeys. Specific binding of [(3)H]Ro 48-8587 was low in the globus pallidus and remained unchanged following both lesion and treatments. In conclusion, the elevated values of AMPA receptors in dyskinetic monkeys (and their prevention through treatments) were only observed in subregions of the striatum.

    Topics: Animals; Antiparkinson Agents; Autoradiography; Benzoxazoles; Brain; Cabergoline; Drug Interactions; Dyskinesia, Drug-Induced; Ergolines; Female; Imidazoles; Levodopa; Ligands; Macaca fascicularis; MPTP Poisoning; Piperidines; Quinazolines; Receptors, AMPA; Receptors, Dopamine D2; Receptors, N-Methyl-D-Aspartate

2010
Implication of NMDA receptors in the antidyskinetic activity of cabergoline, CI-1041, and Ro 61-8048 in MPTP monkeys with levodopa-induced dyskinesias.
    Journal of molecular neuroscience : MN, 2009, Volume: 38, Issue:2

    This study assessed striatal N-methyl-D-aspartate (NMDA) glutamate receptors of 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys with levodopa (L-DOPA)-induced dyskinesias (LID). In a first experiment, four MPTP monkeys receiving L-DOPA/Benserazide alone developed dyskinesias. Four MPTP monkeys received L-DOPA/Benserazide plus CI-1041 an NMDA antagonist selective for NR1/NR2B and four were treated with L-DOPA/Benserazide plus a small dose of cabergoline; one monkey of each group developed mild dyskinesias at the end of treatment. In a second experiment, a kynurenine 3-hydroxylase inhibitor Ro 61-8048, combined with L-DOPA/Benserazide, reduced dyskinesias in MPTP monkeys. Drug-treated MPTP monkeys were compared to intact monkeys and saline-treated MPTP monkeys. Glutamate receptors were investigated by autoradiography using [(3)H]CGP-39653 (NR1/NR2A antagonist) and [(3)H]Ro25-6981 (NR1/NR2B antagonist). In general, striatal [(3)H]CGP-39653 specific binding was unaltered in all experimental groups. MPTP lesion decreased striatal [(3)H]Ro25-6981 specific binding; these levels were enhanced in the L-DOPA-alone-treated MPTP monkeys and decreased in antidyskinetic drugs treated monkeys. Maximal dyskinesias scores of the MPTP monkeys correlated significantly with [(3)H]Ro25-6981 specific binding in the rostral and caudal striatum. Hence, MPTP lesion, L-DOPA treatment and prevention of LID with CI-1041 and cabergoline, or reduction with Ro 61-8048 were associated with modulation of NR2B/NMDA glutamate receptors.

    Topics: Animals; Autoradiography; Behavior, Animal; Benserazide; Benzoxazoles; Cabergoline; Corpus Striatum; Dopamine Agents; Dopamine Agonists; Dopamine Plasma Membrane Transport Proteins; Dyskinesias; Ergolines; Female; Humans; Levodopa; Macaca fascicularis; MPTP Poisoning; Ovariectomy; Piperidines; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate

2009