equilin has been researched along with 17-dihydroequilenin* in 4 studies
4 other study(ies) available for equilin and 17-dihydroequilenin
Article | Year |
---|---|
Metabolic clearance rate of equilin sulfate and its conversion to plasma equilin, conjugated and unconjugated equilenin, 17 beta-dihydroequilin, and 17 beta-dihydroequilenin in normal postmenopausal women and men under steady state conditions.
The constant infusion of [3H]equilin sulfate ([3H]EqS) was used to estimate the MCR of equilin sulfate (EqS) and to measure the conversion of this estrogen to equilin (Eq), equilenin (Eqn), equilenin sulfate (EqnS), 17 beta-dihydroequilin (17 beta-Eq), 17 beta-dihydroequilin sulfate (17 beta-EqS), 17 beta-dihydroequilenin (17 beta-Eqn), and 17 beta-dihydroequilenin sulfate (17 beta-EqnS) in normal postmenopausal women and men. Infusion of [3H]EqS was started in five postmenopausal women and two men 30 min after a priming dose and continued at a constant rate of 12-15 microCi/h for 3 h. Blood samples were taken 15 min before the end of infusion, at the end of the infusion, and 15 min after the end of infusion. Unconjugated and sulfate-conjugated Eq, Eqn, 17 beta-Eq, and 17 beta-Eqn were isolated from plasma. The mean MCR of EqS was calculated to be 280 +/- 24 L/day or 170 +/- 18 L/day.m2. The mean conversion ratios for precursor EqS to product 17 beta-EqS, EqnS, 17 beta-EqnS, 17 beta-Eq, Eq, Eqn, and 17 beta-Eqn were 0.300, 0.190, 0.100, 0.020, 0.016, 0.008, and 0.004 respectively. In both the sulfate-conjugated and unconjugated forms, 17 beta-Eq was the most abundant metabolite formed. 17 beta-Eq estrogen is a potent uterotropic agent and has a much higher affinity for estrogen receptors than Eq. Its formation may be of importance in the overall biological activity of EqS present in conjugated equine estrogen preparations. Topics: Aged; Equilenin; Equilin; Estrogens, Conjugated (USP); Female; Homeostasis; Humans; Male; Middle Aged; Postmenopause; Reference Values | 1993 |
Interaction of ring B unsaturated estrogens with estrogen receptors of human endometrium and rat uterus.
The present investigation was undertaken to compare the binding affinities (Ka) of the ring B unsaturated equine estrogens (equilin [Eq], equilenin [Eqn], 17 beta-dihydroequilin [17 beta-Eq], 17 beta-dihydroequilenin [17 beta-Eqn], 17 alpha-dihydroequilin [17 alpha-Eq], and17 alpha-dihydroequilenin [17 alpha-Eqn]) and the classic estrogens (estrone [E1], 17 beta-estradiol [17 beta-E2], and 17 alpha-estradiol [17 alpha-E2]) for estrogen receptors in human endometrium and rat uterus. In both species, the ring B unsaturated estrogens bind with cytosol and nuclear receptors with high affinity (Ka x 10(9) M-1). The relative binding affinities of these estrogens were measured by determining the amount of unlabeled estrogen required to reduce by 50% the specific binding of [3H]17 beta-Eq to endometrial cytosol receptors. The order of activity found was 17 beta-Eq greater than 17 beta-E2 greater than 17 beta-Eqn greater than E1 greater than Eq greater than 17 alpha-Eq greater than 17 alpha-E2 greater than 17 alpha-Eqn greater than Eqn. Essentially the same order of activity was observed when the apparent affinity constants of these estrogens for human and rat cytosol and nuclear receptors were determined by a competitive (inhibition) binding assay. Sucrose density gradient analysis indicated that these estrogens form protein complexes with cytosol and nuclear preparation that sediment at approximately 8S and 4S, respectively. The affinity constants for 17 beta-Eq were approximately two- to six-fold higher than E2 in both species. In a rat uterotropic assay, all nine estrogens were uterotropic. These data indicate that all ring B unsaturated estrogens present in conjugated equine estrogen preparations are biologically active and they express their biologic effects in the human endometrium by mechanisms similar to those described for the classic estrogens. Topics: Animals; Binding, Competitive; Cell Nucleus; Centrifugation, Density Gradient; Cytosol; Endometrium; Equilenin; Equilin; Estrogens; Female; Humans; Rats; Rats, Inbred Strains; Receptors, Estrogen; Uterus | 1991 |
Metabolism of [3H]equilin-[35S]sulfate and [3H]equilin sulfate after oral and intravenous administration in normal postmenopausal women and men.
The absorption of equilin sulfate and equilin from the gastrointestinal tract was determined in normal men after the ingestion of [3H]equilin-[35S]sulfate or a mixture of [3H]equilin and equilin-[35S]sulfate, while the metabolism of equilin sulfate was investigated after iv administration of [3H]equilin sulfate to postmenopausal women. After the oral administration of [3H]equilin-[35S]sulfate, equilin sulfate containing both 3H and 35S was isolated from plasma; however, only in the first sample taken at 10 min was the 3H/35S ratio the same as that of the [3H]equilin-[35S]sulfate ingested. The 3H/35S ratio then increased, and by 12 h only traces of equilin-[35S]sulfate were detectable. Similarly, after the ingestion of [3H]equilin and equilin-[35S]sulfate, [3H]equilin-[35S]sulfate was isolated from plasma. The 3H/35S ratio was at all time points greater than the 3H/35S ratio of the ingested mixture. Analysis of urine indicated that over 98% of 35S was not associated with any steroid and was most likely inorganic sulfate. After iv administration of [3H] equilin sulfate to postmenopausal women, equilin, equilenin, 17 beta-dihydroequilin, and 17 beta-dihydroequilenin were isolated from the urine. These results indicate that 1) some of the orally administered equilin sulfate was absorbed from the gut without prior hydrolysis, 2) some equilin sulfate was hydrolyzed in the gut before absorption; 3) equilin was absorbed more efficiently than equilin sulfate; 4) equilin absorbed was readily sulfated and circulated in this form; and 5) equilin sulfate was extensively metabolized, and the metabolites were excreted in the urine mainly conjugated with glucuronic acid. Topics: 17-Ketosteroids; Administration, Oral; Age Factors; Digestive System; Equilenin; Equilin; Female; Humans; Injections, Intravenous; Intestinal Absorption; Male; Menopause; Middle Aged | 1989 |
Pharmacokinetics of equilin and equilin sulfate in normal postmenopausal women and men.
The MCRs of equilin sulfate and equilin were determined in normal postmenopausal women and a normal man by single iv injections of either [3H]equilin sulfate or [3H] equilin. After the administration of [3H]equilin sulfate, blood was drawn at various time intervals, and the plasma obtained was fractionated into the unconjugated, sulfate, and glucuronide fractions. The bulk of radioactivity was present in the sulfate fraction, and from this, [3H]equilin sulfate, [3H]17 beta-dihydro-equilin sulfate, [3H]equilenin sulfate, and [3H]17 beta-dihydroequilenin sulfate were isolated and purified, and their concentrations were measured. The disappearance of radioactivity from plasma as equilin sulfate can be described as a function that is the sum of two exponentials. The initial fast component (half-life, 5.2 +/- 1.2 min) represents distribution and transfer from a space, with a mean volume of 12.4 +/- 1.6 liters. The mean value for the rate constant of total removal from the initial volume is 163 +/- 19 U/day, of which 15.8 +/- 2% is irreversible. The mean half-life of the slower component of equilin sulfate is 190 +/- 23 min, and the mean MCR is 176 +/- 44 liters/day . m2. Similarly, after the administration of [3H]equilin to a normal postmenopausal woman and a man, the disappearance of radio-activity from plasma as equilin could be fitted by a single straight line, consistent with a one-compartment system. The half-life of equilin was approximately 19-27 min, and the MCR of equilin was calculated to be 1982 liters/day/m2 in the normal man and 3300 liters/day/m2 in the normal postmenopausal woman. The bulk of [3H]equilin was very rapidly metabolized to mainly equilin sulfate. Small amounts of 17 beta-dihydroequilin sulfate and 17 beta-dihydroequilin were also isolated from the plasma. The in vivo formation of 17 beta-dihydroequilin and its sulfate may be of importance, as this estrogen is approximately 8 times more potent as a uterotropic agent than equilin sulfate. Topics: 17-Ketosteroids; Adult; Equilenin; Equilin; Estrogens, Conjugated (USP); Female; Humans; Kinetics; Male; Menopause; Metabolic Clearance Rate; Middle Aged | 1983 |