epiglucan has been researched along with pustulan* in 8 studies
8 other study(ies) available for epiglucan and pustulan
Article | Year |
---|---|
Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.
Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. Topics: beta-Glucans; Cell Membrane; Cell Wall; Chitin; Glucans; Killer Factors, Yeast; Polysaccharides; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Spheroplasts | 2015 |
The (1->6)-β-glucan moiety represents a cross-reactive epitope of infection-induced malignancy surveillance.
Exposure to pathogen-associated molecular patterns (PAMPs) by vaccination or infection is known to have beneficial effects on neoplastic diseases, although the underlying molecular mechanisms are so far unclear. In this article, we report that Abs against (1→6)-β-d-glucan, a typical microbial PAMP and a major target for high titer circulating natural Abs in healthy human subjects, cross-recognize a novel tumor-associated carbohydrate Ag on cancer cells. The (1→6)-β-glucan cross-reactive moiety is immunologically dominant in tumor cells, as C57BL/6 mice harboring EL-4 solid tumors produced anti-(1→6)-β-glucan Abs and the titer of which significantly correlated with enhanced survival and smaller tumor burden. Moreover, the (1→6)-β-glucan-specific Abs exhibited potent tumoricidal activities in vitro. C57BL/6 mice immunized with Candida albicans produced protective immunity against inoculated EL-4 tumors, which was attributed to the formation of (1→6)-β-glucan-specific Abs. Importantly, (1→6)-β-glucan-specific Abs significantly prolonged the survival and reduced the tumor size in mice inoculated with EL-4 tumors. Our results demonstrate that the (1→6)-β-glucan cross-reactive moiety represents a focal point between infection immunity and cancer surveillance, and natural Abs against this epitope may contribute to the first-line antitumor surveillance in humans. Our data also provide important explanation for the long-observed relationship between feverish infection and concurrent remission from cancer. Topics: Adult; Animals; Antibodies, Fungal; Antibodies, Neoplasm; Antibody Specificity; Antigens, Fungal; Antigens, Neoplasm; beta-Glucans; Candida albicans; Carbohydrate Conformation; Cells, Cultured; Cross Reactions; Dextrans; Female; Fungal Vaccines; Glycogen; Humans; Immunization; Immunodominant Epitopes; Immunologic Surveillance; Leukemia, Experimental; Male; Mice; Mice, Inbred C57BL; Middle Aged; Polysaccharides; Proteoglycans | 2014 |
Potentiation of histamine release by Microfungal (1-->3)- and (1-->6)-beta-D-glucans.
(1-->3)-beta-D-Glucans, a cell wall component in most microfungi, are suggested to play a role in the development of respiratory and general symptoms in organic dust-related diseases. The mechanisms by which they induce these effects are, however, not clear. In the present study, mediator release and its potentiation by the (1-->3)-beta-D-glucan as well as by the (1-->6)-beta-D-glucan found in yeast and other fungi were therefore examined. Blood leucocytes from healthy volunteers and from patients allergic to house dust mite were incubated with (1-->3)-beta-D-glucans with increasing 1,6-branchings: curdlan [a linear (1-->3)-beta-D-glucan], laminarin and scleroglucan, and furthermore with pustulan, a linear (1-->6)-beta-D-glucan. Histamine release was not observed on exposure to the glucans only, but in the presence of anti-immunoglobulin E (IgE) antibody or specific antigens, all the glucans investigated led to an enhancement of the IgE-mediated histamine release. The glucans induced a significant potentiation of the mediator release when present at concentrations in the range of 2-5 x 10(-5) M. These results suggest that (1-->3)-beta-D-glucan as well as (1-->6)-beta-D-glucan aggravates IgE-mediated histamine release. Knowledge concerning the effects of glucans on immune responses may be of importance for understanding and treating inflammatory and allergic diseases. Topics: Adult; Air Pollution, Indoor; Allergens; beta-Glucans; Cell Wall; Dust; Environmental Exposure; Fungi; Glucans; Histamine; Humans; Immunoglobulin E; In Vitro Techniques; Leukocytes; Middle Aged; Polysaccharides; Respiratory Hypersensitivity | 2007 |
In vitro acanthamoebicidal activity of a killer monoclonal antibody and a synthetic peptide.
To evaluate the in vitro microbicidal activity against Acanthamoeba castellanii of a murine monoclonal anti-idiotypic antibody (KTmAb) and a synthetic killer mimotope (KP), which mimic a yeast killer toxin (KT) characterized by a wide spectrum of antimicrobial activity through interaction with specific cell wall receptors, mainly constituted by beta-glucans.. Amoebicidal activity was investigated after incubation of trophozoites under different experimental conditions with laminarinase, KTmAb, KP and a scrambled decapeptide (SP). To confirm the specific interaction of KP with beta-glucans, the experiments were also carried out in the presence of laminarin (beta1-3-glucan) or pustulan (beta1-6-glucan); both glucan molecules were co-incubated with KP or SP.. KTmAb and KP exhibited a time-dependent killing activity, in comparison with SP or heat-inactivated KTmAb; this activity was completely abolished by pre-incubation with laminarin, but not by pustulan. Notably, in vitro amoebicidal activity was observed in the presence of laminarinase, an enzyme that specifically hydrolyses beta-glucans. Furthermore, KP specifically inhibited the growth of Acanthamoeba on infected contact lenses and the remaining adherent KP-treated trophozoites appeared strongly damaged.. The results indicate that the expression of beta1-3-glucan receptors in the cell membrane is probably modulated during cell growth of A. castellanii and is critical for the killing activity of KT-like molecules. Our data confirm the broad antimicrobial spectra of KTmAb and KP, emphasize the crucial role of beta1-3-glucan in microbial physiology and suggest the potential use of KTmAb and KP in the prevention and therapy of Acanthamoeba infections or in preventing Acanthamoeba contamination during storage of contact lenses. Topics: Acanthamoeba castellanii; Amebicides; Animals; Antibodies, Anti-Idiotypic; Antibodies, Monoclonal; beta-Glucans; Cell Wall; Contact Lenses; Glucans; Killer Factors, Yeast; Mice; Mycotoxins; Oligopeptides; Polysaccharides | 2006 |
A synthetic peptide as a novel anticryptococcal agent.
An engineered, killer decapeptide (KP) has been synthesized based on the sequence of a recombinant, single-chain anti-idiotypic antibody (KT-scFv) acting as a functional internal image of a yeast killer toxin. Killer decapeptide exerted a strong fungicidal activity against Candida albicans, which was attributed to peptide interaction with beta-glucan. As this polysaccharide is also a critical component of the cryptococcal cell wall, we wondered whether KP was also active against Cryptococcus neoformans, a human pathogen of increasing medical importance. We found that KP was able to kill both capsular and acapsular C. neoformans cells in vitro. Furthermore, KP impaired the production of specific C. neoformans virulence factors including protease and urease activity and capsule formation, rendering the fungus more susceptible to natural effector cells. In vivo treatment with KP significantly reduced fungal burden in mice with cryptococcosis and, importantly, protected the majority of immunosuppressed animals from an otherwise lethal infection. Given the relevance of cryptococcosis in immunocompromised individuals and the inability of conventional drugs to completely resolve the infection, the results of the present study indicate KP as an ideal candidate for further studies on novel anticryptococcal agents. Topics: Animals; Antifungal Agents; beta-Glucans; Candida albicans; Cryptococcosis; Cryptococcus neoformans; Dose-Response Relationship, Drug; Female; Glucans; Humans; Macrophages; Melanins; Mice; Mice, Inbred BALB C; Neutrophils; Peptides; Polysaccharides; Survival Rate; Virulence Factors | 2004 |
A new strategy for inhibition of the spoilage yeasts Saccharomyces cerevisiae and Zygosaccharomyces bailii based on combination of a membrane-active peptide with an oligosaccharide that leads to an impaired glycosylphosphatidylinositol (GPI)-dependent yea
Glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in yeast are connected to the beta-1,3-glucan network via a beta-1,6-glucan moiety. Addition of gentiobiose or beta-1,6-glucan oligomers to growing cells affected the construction of a normal layer of GPI-dependent cell wall proteins at the outer rim of the Saccharomyces cerevisiae cell wall. Treated S. cerevisiae cells secreted significant amounts of cell wall protein 2, were much more sensitive to the lytic action of zymolyase 20T and displayed a marked increase in sensitivity to the small amphipathic antimicrobial peptide MB-21. Similar results in terms of sensitization of yeast cells to the antimicrobial peptide were obtained with the notorious food spoilage yeast Zygosaccharomyces bailii. Our results indicate that treating cells with a membrane-perturbing compound together with compounds that lead to an impaired construction of a normal GPI-dependent yeast wall protein layer represents an effective strategy to prevent the growth of major food spoilage yeasts. Topics: Antifungal Agents; Antimicrobial Cationic Peptides; beta-Glucans; Cell Membrane; Cell Wall; Disaccharides; Food Microbiology; Glucans; Glycosylphosphatidylinositols; Hydrolases; Membrane Proteins; Oligosaccharides; Peptides; Polysaccharides; Saccharomyces cerevisiae; Zygosaccharomyces | 2001 |
Identification of glucan-mannoprotein complexes in the cell wall of Candida albicans using a monoclonal antibody that reacts with a (1,6)-beta-glucan epitope.
The use of a novel monoclonal antibody (mAb) that reacts with (1,6)-beta-glucan has permitted the study of the different covalent linkages between glucan and mannoproteins in the cell wall of Candida albicans. The mAb JRR1 was originally raised by immunization with Zymolyase extracts from C. albicans cell walls, but it soon became apparent that it reacted with a (1,6)-beta-glucan epitope. By using this antibody, we show the existence of glucan-mannoprotein complexes between the (1,6)-beta-glucan epitope recognized by the antibody and cell wall mannoproteins. The topology of the (1,6)-beta-glucan in the cell wall of C. albicans has also been studied. Topics: Antibodies, Monoclonal; beta-Glucans; Binding, Competitive; Candida albicans; Cell Wall; Chromatography, Affinity; Epitopes; Fluorescent Antibody Technique; Fungal Proteins; Glucans; Mannans; Membrane Glycoproteins; Polysaccharides; Tunicamycin | 1995 |
A beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway.
The ligand specificity of the human monocyte receptor that mediates phagocytosis of particulate activators of the human alternative complement pathway was defined by inhibiting the phagocytic response with glycans known to be present in zymosan. When monocytes in monolayers were preincubated with 100 micrograms/ml of beta-glucan and then incubated with 1.25 to 2.5 X 10(6) zymosan particles, the percentage of cells that exhibited phagocytosis was inhibited in a time-dependent manner; maximal inhibition occurred within 20 min of preincubation. beta-Glucan inhibited monocyte phagocytosis of zymosan and rabbit erythrocytes (Er) in a similar dose-dependent fashion and at 100 micrograms/ml reduced monocyte ingestion of 5 X 10(6)/ml zymosan and 2 X 10(8)/ml Er by 63 +/- 8% and 68 +/- 16% (mean +/- SD, n = 3), respectively. The other glycan constituent of zymosan, mannan, was less than 1% as active, and 10 mg/ml of mannan reduced the number of monocytes ingesting zymosan and Er by 56 +/- 12% and 26 +/- 11%, respectively. At concentrations as high as 500 micrograms/ml, beta-glucan had no effect on monocyte Fc, C3b, or fibronectin receptor-mediated functions. Enzymatic hydrolysis of beta-glucan and alpha-mannan with beta-glucosidase or beta-glucanase before their incubation with monocytes abrogated their inhibitory capacity, whereas hydrolysis with alpha-mannosidase or alpha-glucosidase did not. Neither of the two alpha-glucans tested (dextran T-70 and nigeran) affected monocyte ingestion of zymosan particles or sheep erythrocytes (Es) sensitized with rabbit 7S anti-Es (EsIgG) at concentrations as high as 2 mg/ml. In contrast, a number of beta-glucans were active against zymosan but not EsIgG ingestion with a 75% reduction in the number of monocytes ingesting zymosan occurring with 100 micrograms/ml laminarin, 500 micrograms/ml soluble pachyman, and 900 micrograms/ml of soluble pustulan. The galactan, agarose, either in suspensions at 2 mg/ml or in a soluble portion at 600 micrograms/ml failed to affect monocyte ingestion of zymosan particles or Er. Thus, the monocyte receptor for particulate activators that is specifically inhibited by beta-glucan at a rate compatible with a phagocytic process and that recognizes beta-glucans but not alpha-glucans, mannan, or galactan is a beta-glucan receptor. Topics: beta-Glucans; Binding, Competitive; Cell Adhesion; Complement Activation; Complement Pathway, Alternative; Dextrans; Glucans; Humans; Mannans; Monocytes; Phagocytosis; Polysaccharides; Receptors, Immunologic; Zymosan | 1985 |