epiglucan and phosphoric-acid

epiglucan has been researched along with phosphoric-acid* in 2 studies

Other Studies

2 other study(ies) available for epiglucan and phosphoric-acid

ArticleYear
Chitosan/β-1,3-glucan/hydroxyapatite bone scaffold enhances osteogenic differentiation through TNF-α-mediated mechanism.
    Materials science & engineering. C, Materials for biological applications, 2017, Apr-01, Volume: 73

    The role of TNF-α in bone healing process is still unclear and controversial. Although it is commonly believed that TNF-α inhibits osteogenic differentiation, there are few reports that identified a crucial role of TNF-α in enhancing bone regeneration process. The aim of this study was to prove that novel chitosan/β-1,3-glucan/HA scaffold (chit/glu/HA) may promote osteogenic differentiation via TNF-α-mediated mechanism and an autocrine stimulation of osteoblasts. It was demonstrated that normal human fetal osteoblasts (hFOB 1.19) maintained in conditioned medium containing increased level of TNF-α and harvested from hFOB 1.19 cells cultured on the chit/glu/HA scaffold (CM-chit/glu/HA) were in more advanced phase of osteogenic differentiation compared to the osteoblasts cultured in non-conditioned osteogenic medium and conditioned medium harvested from hFOB 1.19 cells cultured on the polystyrene plate. Cells cultured in CM-chit/glu/HA produced significantly more Col I protein, revealed 2-fold higher bALP activity, deposited 3-fold more calcium phosphate, and formed mineralized nodules. Thus, it was demonstrated that novel chit/glu/HA scaffold is promising material for bone regeneration applications to stimulate accelerated new bone formation as it enhances osteogenic differentiation via increasing TNF-α production by osteoblasts.

    Topics: Alkaline Phosphatase; beta-Glucans; Bone and Bones; Calcium; Cell Differentiation; Chitosan; Culture Media, Conditioned; Durapatite; Extracellular Matrix; Humans; Interleukin-6; Ions; Minerals; Osteoblasts; Osteogenesis; Phosphoric Acids; Tissue Scaffolds; Tumor Necrosis Factor-alpha

2017
The application of various protic acids in the extraction of (1-->3)-beta-D-glucan from Saccharomyces cerevisiae.
    Carbohydrate research, 1997, Apr-21, Volume: 299, Issue:3

    Glucans are (1-->3)-beta-linked glucose polymers which have immune-stimulating capability. The extraction of water-insoluble (1-->3)-beta-D-glucan form Saccharomyces cerevisiae employs hydrochloric acid. Hydrochloric acid is difficult to employ in the large-scale pharmaceutical extraction of glucans due to its corrosive nature and toxicity. To address these concerns, we determined whether acetic, formic or phosphoric acid can be substituted for hydrochloric acid in the process for the isolation of (1-->3)-beta-D-glucan. The resulting microparticulate glucans were employed as the starting material for the production of (1-->3)-beta-D-glucan phosphate. 13C NMR analysis of the glucan phosphates derived from the acetic, formic or phosphoric acid-extracted microparticulate glucan show excellent correspondence to hydrochloric acid extracted glucan and laminarin, a (1-->3)-beta-D-glucan standard, indicating that the primary structure is not altered by the acid used for extraction. Glucan phosphate prepared from hydrochloric acid had a Mw of 7.2 x 10(4) g/mol, rmsz of 17.7 nm, of 1.50 and (eta) of 49.0 mL/g. Glucan phosphate prepared from acetic acid had a primary polymer peak with a Mw of 1.4 x 10(6) g/mol, rmsz of 23.6 nm, I of 1.93 and (eta) of 62.4 mL/g. Glucan phosphate prepared from formic acid had a main polymer peak with a Mw of 1.2 x 10(6) g/mol, rmsz 27.1 nm, I of 1.56 and (eta) of 89.0 mL/g. Glucan phosphate prepared from phosphoric acid had a primary polymer peak with a Mw of 6.6 x 10(5) g/mol, rmsz of 32.3 nm, I of 2.70 and (eta) of 91.3 mL/g. These data indicate that the molecular mass, size, polydispersity and intrinsic viscosity of the glucan phosphate obtained is influenced by the pKa of protic acid employed to extract the microparticulate glucan. However, the primary structure and side-chain branching are not substantially altered regardless of the acid employed.

    Topics: Acetic Acid; Acids; beta-Glucans; Formates; Glucans; Hydrochloric Acid; Magnetic Resonance Spectroscopy; Molecular Weight; Oligosaccharides; Phosphates; Phosphoric Acids; Saccharomyces cerevisiae; Viscosity

1997