epiglucan has been researched along with maltodextrin* in 5 studies
5 other study(ies) available for epiglucan and maltodextrin
Article | Year |
---|---|
Effect of oat and soybean rich in distinct non-starch polysaccharides on fermentation, appetite regulation and fat accumulation in rat.
Consumption of non-starch polysaccharides (NSP) is associated with reduced risk of obesity. This study aimed to compare the effects of cereals (oats) and legumes (soybean), rich in different classes of NSP, on appetite regulation and fat accumulation in rats. Soy pectin fermented more efficient than cereal arabinoxylan in rats. Soy pectin and oat β-glucan were utilized mainly in the caecum of rats. Only small amount of maltodextrin, cello-oligosaccharides and xylo-oligosaccharides were detected in the digesta. Caecal fermentation of soy pectin produced significantly higher concentration of short chain fatty acids (SCFAs) compared to the control. Retroperitoneal (RP) fat-pad weight was significantly lower for rats fed with soybean meal enriched diet than for controls. An inverse correlation between rat RP fat-pad weight and concentration (and proportion) of butyrate was observed. Consumption of soy pectin and oat β-glucan enriched foods to produce targeted SCFAs in vivo could be a potential strategy to lower fat mass accumulation and a potential tool to manage obesity. Topics: Animals; Appetite Regulation; Avena; beta-Glucans; Body Weight; Cecum; Dietary Fiber; Digestion; Fermentation; Glycine max; Humans; Obesity; Pectins; Polysaccharides; Rats | 2019 |
Characterization of the macromolecular and sensory profile of non-alcoholic beers produced with various methods.
Due to changing consumer habits, non-alcoholic beer is the fastest-growing market within the beverage industry. Different processing technologies for limiting the alcohol content of beer yield in completely different matrix compositions and sensory profiles. Especially the specific sensory attributes of palate fullness, mouthfeel, and the perception of harmony (ratio harmony between sweetness and sourness) of non-alcoholic beers are often described as atypical and unbalanced by the consumer. In addition to technological aspects, the matrix components represent a significant factor. Cereal-based beverages contain a complex mixture of various polymers that includes proteins, polyphenols, and polysaccharides. These polymers affect the sensory perception of beverages in terms of mouthfeel depending on their substance properties. This article reports the analytical characterization of the macromolecular profile of non-alcoholic beers to predict sensory differences in palate fullness and mouthfeel that arise because of variations in polymer profile and processing method. Therefore, asymmetric flow-field-flow-fractionation (FFF/AF4), multi-angle light-scattering (MALS), and refractive index measurements were used to characterize polymers in non-alcoholic beers. We observed significant differences in the ratio of low- to high-molar-mass polymers. These differences included a shift of the molar mass distribution towards higher molar masses for beers subjected to higher thermal loads during dealcoholization in a rectification column. Limited fermentation beers tended to be composed of more low-molar-mass polymers. Highly discriminating sensorial assessment schemes demonstrate the correlations between differences in macromolecular profile and specific sensory impressions like sweetness (basic taste), palate fullness and harmony. This trend is verified in the present study with spiking experiments using substances that are known to influence mouthfeel and palate fullness, such as beta-glucans, dextrins, isomaltulose, and other low-molar-mass sugars, may be controlled during the production process. These results confirm that the particular sensory attributes can be influenced by different classes of cereal-based substances, especially by varying their molar mass fractions and concentrations. Maltodextrins and β-glucan are shown to enhance palate fullness. Spiking with maltodextrin caused a lasting, smooth, and pleasant perception of mouthfeel; spiking with β-glucan re Topics: Beer; beta-Glucans; Dextrins; Edible Grain; Fermentation; Food Analysis; Fractionation, Field Flow; Humans; Isomaltose; Macromolecular Substances; Molecular Weight; Polymers; Polyphenols; Polysaccharides; Refractometry; Taste; Viscosity | 2019 |
Beta-Glucan as Wall Material in Encapsulation of Elderberry (Sambucus nigra) Extract.
The aim of the study was to investigate the potential of using β-glucan as wall material to microencapsulate the elderberry extract. Firstly, the extract was obtained by the water-acetone extraction method to extract mainly anthocyanins from ground dried fruits. The extract was mixed with wall materials: maltodextrin-β-glucan mixture and the control sample as a widely used combination of maltodextrin and arabic gum (92.5:7.5). In the examined samples the content of β-glucan was 0.5, 1, 2 and 3%. Properties of encapsulated extracts of final powders were measured using particle size and morphology, encapsulation efficiency, color measurement, total anthocyanin and ascorbic acid content (TAC and TAAC) methods. Our results indicated that the β-glucan wall material samples had higher process quality compared to control samples. Addition of β-glucan insignificantly decreases encapsulation efficiency. Among powders with β-glucan content, the powder with 1% β-glucan content was characterized by the smallest (24 μm) particle size. The sample with 2% β-glucan content had the highest water solubility and polydispersity index. Due to the encapsulation efficiency, moisture content, and water solubility index, the optimum condition of microencapsulation process for elderberry extract was for samples with 0.5% β-glucan as wall material content. To conclude, due to high molecular weight of β-glucan the higher than 0.5% ratio of β-glucan is not recommended for spray-drying method. However, small quantity of health-beneficial β-glucan could act as potential encapsulation agent in clean label products to replace Arabic gum. Topics: Anthocyanins; Ascorbic Acid; beta-Glucans; Desiccation; Drug Compounding; Fruit; Gum Arabic; Particle Size; Plant Extracts; Polysaccharides; Powders; Sambucus nigra; Solubility; Water | 2019 |
Microencapsulation of borage oil with blends of milk protein, β-glucan and maltodextrin through spray drying: physicochemical characteristics and stability of the microcapsules.
Borage oil is a rich commercial source of γ-linolenic acid (18:3n-6). However, borage oil is rich in omega-6 polyunsaturated fatty acids and vulnerable to oxidation. Thus, selecting appropriate wall materials is critical to the encapsulation of borage oil. The present study investigated the influence of wall materials on the physicochemical characteristics and stability of microencapsulated borage oil by spray drying. Blends of milk protein [sodium caseinate (CAS) or whey protein concentrate], β-glucan (GLU) and maltodextrin (MD) were used as the wall materials for encapsulating borage oil.. The microencapsulation of borage oil with different wall materials attained high encapsulation efficiencies. The microencapsulated borage oil prepared with CAS-MD achieved the optimal encapsulation efficiency of 96.62%. The oxidative stabilities of borage oil and microencapsulated borage oil were measured by accelerated storage test at 45 °C and 33% relative humidity for 30 days. The microencapsulated borage oil presented lower peroxide values than those of borage oil, and the microcapsules prepared with CAS-10GLU-MD (consisting of CAS 50 g kg. The results of the present study demonstrate that the CAS-GLU-MD blend is appropriate for microencapsulating borage oil. © 2017 Society of Chemical Industry. Topics: Animals; beta-Glucans; Capsules; Cattle; Drug Carriers; Drug Compounding; Drug Stability; gamma-Linolenic Acid; Milk Proteins; Oxidation-Reduction; Plant Oils; Polysaccharides | 2018 |
Stability and release behavior of encapsulated flavor from spray-dried Saccharomyces cerevisiae and maltodextrin powder.
Yeast cells (Saccharomyces cerevisiae), from which β-glucans have been partially extracted, were used to encapsulate flavor inside the lipid bilayer membrane as natural encapsulant. The focus of this study was to investigate the release and stability of flavors (d-limonene and ethyl hexanoate) encapsulated in yeast cells and maltodextrin (MD) (DE = 19) by spray drying. The release behavior of encapsulated flavors from yeast cells was measured at 40, 60, 80, and 105 °C with different moisture content (0, 50, 100, and 200% of powder). Water affected flavor release from the yeast cells. The release rate constants were correlated using Gaussian distribution of the activation energy of the release rate constants. The release of d-limonene from the spray-dried MD powder showed a different trend than that of yeast cells at various temperatures. The activation energies of the release rate constant for ethyl hexanoate and d-limonene from yeast were 55 and 49 kJ/mol, respectively, under a wet condition. The formation rates of limonene oxide and carvone were slower in yeast than that of MD powder at 30 °C after 2 months. Topics: beta-Glucans; Caproates; Desiccation; Limonene; Polysaccharides; Powders; Saccharomyces cerevisiae; Taste; Temperature; Yeast, Dried | 2018 |