epiglucan has been researched along with deoxynivalenol* in 4 studies
4 other study(ies) available for epiglucan and deoxynivalenol
Article | Year |
---|---|
Repression of deoxynivalenol-triggered cytotoxicity and apoptosis by mannan/β-glucans from yeast cell wall: Involvement of autophagy and PI3K-AKT-mTOR signaling pathway.
Deoxynivalenol (DON) is the most common trichothecene distributed in food and feed. So far, much work has focused on investigating the cytotoxicity of DON, while there is few researches aimed at intervening in the toxic impacts on humans and livestock posed by DON. The objective of this study is to investigate the underlying mechanism of biomacromolecules mannan/β-glucans from yeast cell wall (BYCW) for their potency to impede the cytotoxicity and apoptosis caused by DON with porcine jejunum epithelial cell lines (IPEC-J2) used as a cell injury model. We analyzed the cell morphology, cell activity, oxidative stress, fluorescence intensity and expressions of proteins relevant to autophagy, apoptosis and PI3K-AKT-mTOR signaling pathway by using inverted microscopy, MTS, reactive oxygen species (ROS), glutathione (GSH) and malondialdehyde (MDA) assay, Annexin V-FITC / propidium iodide (PI) double staining and Western blot assay. The consequent data demonstrated that in the presence of BYCW, the cell morphology and activity were relatively ameliorated and that the oxidation damage was attenuated with DON-induced autophagy concomitantly decreased, which, furthermore, was found involved in the positive regulation on PI3K-AKT-mTOR signaling pathway by BYCW. In a word, BYCW possess an ability to repress the cytotoxicity and apoptosis induced by DON through the inhibition of autophagy via activating PI3K-AKT-mTOR signaling pathway. Topics: Animals; Apoptosis; Autophagy; beta-Glucans; Cell Line; Cell Proliferation; Cell Wall; Fusarium; Jejunum; Mannans; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Saccharomyces cerevisiae; Signal Transduction; Swine; TOR Serine-Threonine Kinases; Trichothecenes | 2020 |
Protective effects of mannan/β-glucans from yeast cell wall on the deoxyniyalenol-induced oxidative stress and autophagy in IPEC-J2 cells.
The aim of this study was to investigate the effects of biomacromolecules mannan/β-glucans from yeast cell wall (BYCW) to alleviate Deoxynivalenol(DON)-induced injury. Considering that DON has strong oxidizing effect and stimulates autophagy and apoptosis, we examined the effects of BYCW on consequent oxidative stress damage indicators, cells autophagy and apoptosis induced by DON using the porcine jejunum epithelial cell lines (IPEC-J2) as a cell culture model. The results showed that application of BYCW could reverse the decrease of cell viability by DON significantly, and suppress the levels of tumor necrosis factor-α (TNF-α) and interleukin-8 and -6 (IL-8 and IL-6), except IL-1β. Further experiments revealed that BYCW treatment counteracted the DON-induced down-regulation of intracellular glutathione (GSH) and up-regulation of reactive oxygen species (ROS) and malondialdehyde (MDA). Through western blot analysis, we observed that BYCW treatment was able to down-regulate the expression of autophagy protein LC3-II and up-regulate the expression of P62 protein against DON, which suggested that autophagy induced by DON may be suppressed. Altogether, these results indicated a potential ability of supplementation of BYCW to improve cell growth and metabolism as well as the preventive properties of BYCW against the DON-induced cell damage by activating antioxidant system. Topics: Animals; Apoptosis; Autophagy; beta-Glucans; Cell Line; Cell Proliferation; Cell Survival; Cell Wall; Cytoprotection; Glutathione; Malondialdehyde; Mannans; Oxidative Stress; Reactive Oxygen Species; Saccharomyces cerevisiae; Trichothecenes | 2019 |
Evaluation of β-D-glucan biopolymer as a novel mycotoxin binder for fumonisin and deoxynivalenol in soybean feed.
The walls of yeast cells, which contain β-D-glucan biopolymers, have an active role in reducing mycotoxins in animal feed. This study aimed to evaluate the β-D-glucan biopolymers as a mycotoxin binder for fumonisin (FUM) and deoxynivalenol (DON) toxins as well as their effect on the nutritional value of soybean, which is considered one of the important feed row materials. The evaluation was carried out using some toxigenic Fusarium isolates (Fusarium solani, F. oxysporum, and F. verticillioides) in vitro and in vivo. The FUM and DON levels were determined by immune affinity column. The F. verticillioides was the most toxigenic, followed by F. oxysporum and lastly F. solani, while secretion of DON toxin was determined to be greater than FUM with all the tested fungi. The effectiveness of β-D-glucan biopolymers on FUM and DON absorption was greater than clay and calcium propionate. In vivo, treating soybean seeds with β-D-glucan biopolymers led to reduction in the level of FUM and DON toxins in seeds artificially inoculated by F. verticillioides. β-D-glucan treatment also has a low effect on nutritional components of the seeds compared to untreated ones. In conclusion, this study found a new approach to reduce Fusarium mycotoxins in feed to an allowable safe limit and at the same time maintaining the nutritional value of these materials. Topics: Absorption, Physicochemical; Animal Feed; Animals; Antidotes; beta-Glucans; Cell Wall; Dietary Carbohydrates; Dietary Fats; Egypt; Food Contamination; Food Preservatives; Foodborne Diseases; Fumonisins; Fusarium; Glycine max; Mycotoxins; Poisons; Saccharomyces cerevisiae; Seeds; Soybean Proteins; Species Specificity; Trichothecenes | 2014 |
The effect of fungicidal treatment on selected quality parameters of barley and malt.
Protection of barley grain against contamination by fungi such as Fusarium spp., particularly by those producing mycotoxins, secondary metabolites with adverse health effects, is of principal importance. Fungicides applied immediately after full heading of spring barley is one method of direct protection. In this work, extensive two-year field experiments combined with a detailed chemical laboratory analysis (barley and malt) were performed with the aim to study the effect of previous crops, different fungicides, and other conditions on the selected barley and malt quality parameters (content of beta-glucans, pentosans, oxalic acid, deoxynivalenol, and gushing), while the main task was to follow the effect of the fungicide (used as a treatment to protect against pathogens, mostly Fusarium) on changes of the chemical composition in barley and malt, and gushing. It was found that the relationship between the studied factors and the parameters usually applied to the evaluation of barley and malt quality is quite complex and not straightforward. The responses show typical features of a multifactorial influence with both positive and negative correlations resulting in a decrease or increase in grain quality (concentrations of beta-glucans, pentosans, deoxynivalenol, and other studied parameters). The role of previous crops was also found to be important. The fungicides should be applied at the time of heading but not at the very beginning of this period. Topics: beta-Glucans; Edible Grain; Fungicides, Industrial; Fusarium; Hordeum; Mycotoxins; Quality Control; Trichothecenes | 2006 |