epiglucan and cellodextrin

epiglucan has been researched along with cellodextrin* in 3 studies

Other Studies

3 other study(ies) available for epiglucan and cellodextrin

ArticleYear
Molecular details of ligand selectivity determinants in a promiscuous β-glucan periplasmic binding protein.
    BMC structural biology, 2013, Oct-04, Volume: 13

    Members of the periplasmic binding protein (PBP) superfamily utilize a highly conserved inter-domain ligand binding site that adapts to specifically bind a chemically diverse range of ligands. This paradigm of PBP ligand binding specificity was recently altered when the structure of the Thermotoga maritima cellobiose-binding protein (tmCBP) was solved. The tmCBP binding site is bipartite, comprising a canonical solvent-excluded region (subsite one), adjacent to a solvent-filled cavity (subsite two) where specific and semi-specific ligand recognition occur, respectively.. A molecular level understanding of binding pocket adaptation mechanisms that simultaneously allow both ligand specificity at subsite one and promiscuity at subsite two has potentially important implications in ligand binding and drug design studies. We sought to investigate the determinants of ligand binding selectivity in tmCBP through biophysical characterization of tmCBP in the presence of varying β-glucan oligosaccharides. Crystal structures show that whilst the amino acids that comprise both the tmCBP subsite one and subsite two binding sites remain fixed in conformation regardless of which ligands are present, the rich hydrogen bonding potential of water molecules may facilitate the ordering and the plasticity of this unique PBP binding site.. The identification of the roles these water molecules play in ligand recognition suggests potential mechanisms that can be utilized to adapt a single ligand binding site to recognize multiple distinct ligands.

    Topics: Amino Acid Sequence; Bacterial Proteins; beta-Glucans; Binding Sites; Carrier Proteins; Cellulose; Circular Dichroism; Crystallography, X-Ray; Dextrins; Glucans; Hydrogen Bonding; Lectins; Ligands; Models, Molecular; Polysaccharides; Protein Conformation; Protein Denaturation; Protein Stability; Protein Structure, Secondary; Protein Structure, Tertiary; Substrate Specificity; Thermotoga maritima

2013
Redefining XynA from Penicillium funiculosum IMI 378536 as a GH7 cellobiohydrolase.
    Journal of industrial microbiology & biotechnology, 2012, Volume: 39, Issue:11

    The secretome of Penicillium funiculosum contains two family GH7 enzymes, one of which (designated XynA) has been described as a xylanase. This is unusual because it is the only xylanase in family GH7, which is mainly composed of cellobiohydrolases and endoglucanases, and also because XynA is highly similar to the cellobiohydrolase I from Talaromyces emersonii and Trichoderma reesei (72 and 65 % identity, respectively). To probe this enigma, we investigated the biochemical properties of XynA, notably its activity on xylans and β-D-glucans. A highly pure sample of XynA was obtained and used to perform hydrolysis tests on polysaccharides. These revealed that XynA is 100-fold more active on β-1,4-glucan than on xylan. Likewise, XynA was active on both 4-nitrophenyl-β-D-lactopyranoside (pNP-β-D-Lac) and 4-nitrophenyl-β-D-cellobioside (pNP-cellobiose), which shows that XynA is principally an exo-acting type 1 cellobiohydrolase enzyme that displays 5.2-fold higher performance on pNP-cellobiose than on pNP-β-D-Lac. Finally, analyses performed using cellodextrins as substrate revealed that XynA mainly produced cellobiose (C2) from substrates containing three or more glucosyl subunits, and that C2 inhibits XynA at high concentrations (IC(50) (C2) = 17.7 μM). Overall, this study revealed that XynA displays typical cellobiohydrolase 1 activity and confirms that the description of this enzyme in public databases should be definitively amended. Moreover, the data provided here complete the information provided by a previous proteomics investigation and reveal that P. funiculosum secretes a complete set of cellulose-degrading enzymes.

    Topics: beta-Glucans; Cellobiose; Cellulase; Cellulose; Cellulose 1,4-beta-Cellobiosidase; Dextrins; Glucans; Hydrolysis; Penicillium; Substrate Specificity; Talaromyces; Trichoderma; Xylans

2012
Cellodextrin and laminaribiose ABC transporters in Clostridium thermocellum.
    Journal of bacteriology, 2009, Volume: 191, Issue:1

    Clostridium thermocellum is an anaerobic thermophilic bacterium that grows efficiently on cellulosic biomass. This bacterium produces and secretes a highly active multienzyme complex, the cellulosome, that mediates the cell attachment to and hydrolysis of the crystalline cellulosic substrate. C. thermocellum can efficiently utilize only beta-1,3 and beta-1,4 glucans and prefers long cellodextrins. Since the bacterium can also produce ethanol, it is considered an attractive candidate for a consolidated fermentation process in which cellulose hydrolysis and ethanol fermentation occur in a single process. In this study, we have identified and characterized five sugar ABC transporter systems in C. thermocellum. The putative transporters were identified by sequence homology of the putative solute-binding lipoprotein to known sugar-binding proteins. Each of these systems is transcribed from a gene cluster, which includes an extracellular solute-binding protein, one or two integral membrane proteins, and, in most cases, an ATP-binding protein. The genes of the five solute-binding proteins were cloned, fused to His tags, overexpressed, and purified, and their abilities to interact with different sugars was examined by isothermal titration calorimetry. Three of the sugar-binding lipoproteins (CbpB to -D) interacted with different lengths of cellodextrins (G(2) to G(5)), with disassociation constants in the micromolar range. One protein, CbpA, binds only cellotriose (G(3)), while another protein, Lbp (laminaribiose-binding protein) interacts with laminaribiose. The sugar specificity of the different binding lipoproteins is consistent with the observed substrate preference of C. thermocellum, in which cellodextrins (G(3) to G(5)) are assimilated faster than cellobiose.

    Topics: ATP-Binding Cassette Transporters; Bacterial Proteins; Base Sequence; beta-Glucans; Biological Transport; Calorimetry; Cellulose; Clostridium thermocellum; Dextrins; Disaccharides; DNA Primers; Glucose; Gram-Positive Bacteria; Lactose; Molecular Sequence Data; Multienzyme Complexes; Plasmids; RNA, Bacterial; Transcription, Genetic

2009