epigallocatechin gallate has been researched along with orlistat in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 4 (66.67) | 24.3611 |
2020's | 2 (33.33) | 2.80 |
Authors | Studies |
---|---|
Abramson, HN | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Ali, A; Go, ML; Lam, Y; Tan, YJ; Tee, SY; Teo, JT; Xi, Y | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Avalos-Soriano, A; Basilio-Antonio, L; Bello, M; Correa-Basurto, J; Fragoso-Vázquez, J | 1 |
Kukk, K; Lookene, A; Reimund, M; Risti, R; Samel, N; Villo, L | 1 |
6 other study(ies) available for epigallocatechin gallate and orlistat
Article | Year |
---|---|
The lipogenesis pathway as a cancer target.
Topics: Acetyl-CoA Carboxylase; Animals; Antineoplastic Agents; ATP Citrate (pro-S)-Lyase; Biosynthetic Pathways; Fatty Acid Synthases; Fatty Acids; Humans; Lipogenesis; Models, Chemical; Molecular Structure; Neoplasms | 2011 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Galloyl esters of trans-stilbenes are inhibitors of FASN with anticancer activity on non-small cell lung cancer cells.
Topics: Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Esters; Fatty Acid Synthase, Type I; Gallic Acid; Humans; Lung Neoplasms; Molecular Structure; Stilbenes; Structure-Activity Relationship | 2019 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |
Molecular recognition between pancreatic lipase and natural and synthetic inhibitors.
Topics: Catechin; Enzyme Inhibitors; Humans; Kinetics; Lactones; Ligands; Lipase; Molecular Dynamics Simulation; Obesity; Orlistat; Pancreas | 2017 |
Calorimetric approach for comparison of Angiopoietin-like protein 4 with other pancreatic lipase inhibitors.
Topics: Angiopoietin-Like Protein 4; Anti-Obesity Agents; Calorimetry; Catechin; Drug Evaluation, Preclinical; Enzyme Assays; Humans; Lipase; Obesity; Orlistat; Polylysine; Recombinant Proteins | 2020 |