Page last updated: 2024-08-24

epigallocatechin gallate and daidzein

epigallocatechin gallate has been researched along with daidzein in 14 studies

Research

Studies (14)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (21.43)29.6817
2010's9 (64.29)24.3611
2020's2 (14.29)2.80

Authors

AuthorsStudies
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D1
Carver, JA; Duggan, PJ; Ecroyd, H; Liu, Y; Meyer, AG; Tranberg, CE1
Amić, D; Lucić, B1
Cai, S; Chu, L; Gao, F; Ji, B; Jia, G; Liu, J; Liu, Y; Wang, A; Wei, Y; Wu, W; Xie, L; Zhang, D; Zhou, F1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Cahlikova, L; Chlebek, J; Havrankova, J; Hofman, J; Hostalkova, A; Lundova, T; Musilek, K; Novotna, E; Wsol, V; Zemanova, L1
Golonko, A; Lazny, R; Lewandowski, W; Pienkowski, T; Roszko, M; Swislocka, R1
Kalra, S; Khatik, GL; Kumar, GN; Kumar, R; Narang, R; Nayak, SK; Singh, SK; Sudhakar, K1
Fong, J; Korobkova, EA; Maran, U; Oja, M; Rice, M; Samuels, K; Sapse, AM; Williams, AK; Wong, B1
Johnson, MK; Loo, G1
Furusawa, M; Kashimata, M; Nagayama, M; Takeuchi, H; Tanaka, T; Tsuchiya, H1
Anderson, SL; Liu, B; Peters, AJ; Qiu, J; Rubin, BY; Schwartz, JA; Sturm, AJ; Sullivan, KA1
Choi, C; Seo, DJ1
Borchardt, J; Böttcher, I; Buchmann, D; Guenther, S; Schaufler, K; Schultze, N1

Reviews

2 review(s) available for epigallocatechin gallate and daidzein

ArticleYear
Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
    European journal of medicinal chemistry, 2019, Apr-01, Volume: 167

    Topics: Animals; Diet; Humans; Neoplasms; Phenols; Polyphenols; Proteasome Endopeptidase Complex; Ubiquitin

2019
Recent advancements in mechanistic studies and structure activity relationship of F
    European journal of medicinal chemistry, 2019, Nov-15, Volume: 182

    Topics: Animals; Anti-Bacterial Agents; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium; Proton-Translocating ATPases; Structure-Activity Relationship

2019

Other Studies

12 other study(ies) available for epigallocatechin gallate and daidzein

ArticleYear
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
    Journal of medicinal chemistry, 2006, Jun-01, Volume: 49, Issue:11

    Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship

2006
Carboxymethylated-kappa-casein: a convenient tool for the identification of polyphenolic inhibitors of amyloid fibril formation.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Alzheimer Disease; Amyloid; Amyloid beta-Peptides; Animals; Caseins; Flavonoids; Humans; Methylation; Milk; Structure-Activity Relationship

2010
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Comparative study on antioxidant capacity of flavonoids and their inhibitory effects on oleic acid-induced hepatic steatosis in vitro.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:9

    Topics: Antioxidants; Cell Line; Fatty Liver; Flavonoids; Humans; In Vitro Techniques; Oleic Acid; Reactive Oxygen Species; Triglycerides

2011
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    Topics: Aldehyde Reductase; Aldo-Keto Reductases; Apigenin; Daunorubicin; Enzyme Inhibitors; Flavones; Flavonoids; HCT116 Cells; Humans; Luteolin; Molecular Conformation; Molecular Structure; Neoplasms

2015
A role of flavonoids in cytochrome c-cardiolipin interactions.
    Bioorganic & medicinal chemistry, 2021, 03-01, Volume: 33

    Topics: Cardiolipins; Cytochromes c; Dose-Response Relationship, Drug; Enzyme Inhibitors; Flavonoids; Humans; Molecular Structure; Oxidation-Reduction; Structure-Activity Relationship

2021
Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA.
    Mutation research, 2000, Apr-28, Volume: 459, Issue:3

    Topics: Antioxidants; Bepridil; Biphenyl Compounds; Catechin; Comet Assay; DNA; DNA Damage; Flavanones; Flavonoids; Free Radical Scavengers; Genistein; Hesperidin; Humans; Indicators and Reagents; Isoflavones; Jurkat Cells; Molsidomine; Nitric Oxide Donors; Oxidation-Reduction; Picrates; Quercetin

2000
Membrane-rigidifying effects of anti-cancer dietary factors.
    BioFactors (Oxford, England), 2002, Volume: 16, Issue:3-4

    Topics: Animals; Antineoplastic Agents, Phytogenic; Apigenin; Catechin; Cell Division; Cell Membrane; Diet; Flavonoids; Fluorescence Polarization; Genistein; Isoflavones; Liposomes; Membrane Fluidity; Membrane Lipids; Mice; Multiple Myeloma; Phenols; Resveratrol; Stilbenes; Tumor Cells, Cultured

2002
Nutraceutical-mediated restoration of wild-type levels of IKBKAP-encoded IKAP protein in familial dysautonomia-derived cells.
    Molecular nutrition & food research, 2012, Volume: 56, Issue:4

    Topics: Blotting, Western; Carrier Proteins; Catechin; Dietary Supplements; Drug Synergism; Dysautonomia, Familial; Fibroblasts; Genistein; Genotype; HEK293 Cells; Humans; Isoflavones; Neurons; Phosphotransferases (Phosphate Group Acceptor); Reverse Transcriptase Polymerase Chain Reaction; RNA Splicing; Transcriptional Elongation Factors; Up-Regulation

2012
Inhibitory mechanism of five natural flavonoids against murine norovirus.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2017, Jul-01, Volume: 30

    Topics: Animals; Antiviral Agents; Catechin; Cell Line; Cytokines; Drug Evaluation, Preclinical; Flavonoids; Flavonols; Gene Expression Regulation; Interleukin-6; Isoflavones; Mice; Nitric Oxide Synthase Type II; Norovirus; Quercetin; Up-Regulation; Virus Replication

2017
Synergistic antimicrobial activities of epigallocatechin gallate, myricetin, daidzein, gallic acid, epicatechin, 3-hydroxy-6-methoxyflavone and genistein combined with antibiotics against ESKAPE pathogens.
    Journal of applied microbiology, 2022, Volume: 132, Issue:2

    Topics: Acinetobacter baumannii; Anti-Bacterial Agents; Catechin; Drug Resistance, Multiple, Bacterial; Drug Synergism; Flavones; Flavonoids; Gallic Acid; Genistein; Isoflavones; Microbial Sensitivity Tests

2022