epigallocatechin gallate has been researched along with cytidine in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (50.00) | 29.6817 |
2010's | 2 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Chuang, JC; Jones, PA; Kwan, JM; Li, TW; Liang, G; Yang, AS; Yoo, CB | 1 |
Brueckner, B; Lyko, F; Musch, T; Stopper, H; Stresemann, C | 1 |
Chie, EK; Kim, HJ; Kim, IA; Kim, IH; Kim, JH; Young, PD | 1 |
Levine, A; Sun, Y; Yi, L | 1 |
4 other study(ies) available for epigallocatechin gallate and cytidine
Article | Year |
---|---|
Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2'-deoxycytidine.
Topics: Antimetabolites, Antineoplastic; Azacitidine; Carcinoma, Transitional Cell; Catechin; Cell Line, Tumor; Colorectal Neoplasms; Cytidine; Decitabine; Deoxycytidine; DNA Methylation; DNA Modification Methylases; Enzyme Inhibitors; Female; Gene Silencing; HT29 Cells; Humans; Hydralazine; Male; Procainamide; Prostatic Neoplasms; Reverse Transcriptase Polymerase Chain Reaction | 2005 |
Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines.
Topics: Azacitidine; Catechin; Cell Line, Tumor; Cytidine; Decitabine; DNA (Cytosine-5-)-Methyltransferases; DNA Methylation; Enzyme Inhibitors; Humans; Indoles; Jurkat Cells; Phthalimides; Procaine; Propionates; Tryptophan | 2006 |
DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity.
Topics: Azacitidine; Caspase 3; Catechin; Cell Line, Tumor; Cytidine; Decitabine; Disulfides; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Breaks, Double-Stranded; DNA Methyltransferase 3A; DNA Methyltransferase 3B; DNA Repair; Enzyme Induction; Gene Expression Regulation, Neoplastic; Glioblastoma; Histones; Humans; Hydralazine; Inhibitory Concentration 50; Lung Neoplasms; Neoplasm Proteins; Radiation-Sensitizing Agents; Tumor Stem Cell Assay; Tyrosine | 2012 |
Selected drugs that inhibit DNA methylation can preferentially kill p53 deficient cells.
Topics: Animals; Anticarcinogenic Agents; Azacitidine; Catechin; Cell Line, Tumor; Cell Proliferation; Cytidine; Decitabine; DNA Methylation; Humans; Lung Neoplasms; Mice; Mice, Inbred C57BL; Mice, Knockout; Mutation; Neoplasm Transplantation; Phthalimides; Tryptophan; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays | 2014 |