epidermal-growth-factor has been researched along with tetrafluoroaluminate* in 3 studies
3 other study(ies) available for epidermal-growth-factor and tetrafluoroaluminate
Article | Year |
---|---|
Proteomic identification and functional characterization of a novel ARF6 GTPase-activating protein, ACAP4.
ARF6 GTPase is a conserved regulator of membrane trafficking and actin-based cytoskeleton dynamics at the leading edge of migrating cells. A key determinant of ARF6 function is the lifetime of the GTP-bound active state, which is orchestrated by GTPase-activating protein (GAP) and GTP-GDP exchanging factor. However, very little is known about the molecular mechanisms underlying ARF6-mediated cell migration. To systematically analyze proteins that regulate ARF6 activity during cell migration, we performed a proteomic analysis of proteins selectively bound to active ARF6 using mass spectrometry and identified a novel ARF6-specific GAP, ACAP4. ACAP4 encodes 903 amino acids and contains two coiled coils, one pleckstrin homology domain, one GAP motif, and two ankyrin repeats. Our biochemical characterization demonstrated that ACAP4 has a phosphatidylinositol 4,5-bisphosphate-dependent GAP activity specific for ARF6. The co-localization of ACAP4 with ARF6 occurred in ruffling membranes formed upon AIF(4) and epidermal growth factor stimulation. ACAP4 overexpression limited the recruitment of ARF6 to the membrane ruffles in the absence of epidermal growth factor stimulation. Expression of GTP hydrolysis-resistant ARF6(Q67L) resulted in accumulations of ACAP4 and ARF6 in the cytoplasmic membrane, suggesting that GTP hydrolysis is required for the ARF6-dependent membrane remodeling. Significantly the depletion of ACAP4 by small interfering RNA or inhibition of ARF6 GTP hydrolysis by overexpressing GAP-deficient ACAP4 suppressed ARF6-dependent cell migration in wound healing, demonstrating the importance of ACAP4 in cell migration. Thus, our study sheds new light on the biological function of ARF6-mediated cell migration. Topics: Actins; ADP-Ribosylation Factor 6; ADP-Ribosylation Factors; Aluminum Compounds; Amino Acid Substitution; Cell Membrane; Cell Movement; Cytoskeleton; Epidermal Growth Factor; Fluorides; GTPase-Activating Proteins; HeLa Cells; Humans; Intracellular Membranes; Membrane Microdomains; Phosphatidylinositol 4,5-Diphosphate; Protein Binding; Proteomics | 2006 |
Activation of the epidermal growth factor receptor signal transduction pathway stimulates tyrosine phosphorylation of protein kinase C delta.
The expression of an oncogenic rasHa gene in epidermal keratinocytes stimulates the tyrosine phosphorylation of protein kinase C delta and inhibits its enzymatic activity (Denning, M. F., Dlugosz, A. A., Howett, M. K., and Yuspa, S. H. (1993) J. Biol. Chem. 268, 26079-26081). Keratinocytes expressing an activated rasHa gene secrete transforming growth factor alpha (TGFalpha) and have an altered response to differentiation signals involving protein kinase C (PKC). Because the neoplastic phenotype of v-rasHa expressing keratinocytes can be partially mimicked in vitro by chronic treatment with TGF alpha and the G protein activator aluminum fluoride (AlF4-), we determined if TGF alpha or AlF4- could induce tyrosine phosphorylation of PKCdelta. Treatment of primary keratinocyte cultures for 4 days with TGFalpha induced tyrosine phosphorylation of PKCdelta, whereas AlF4- only slightly stimulated PKCdelta tyrosine phosphorylation. The PKCdelta that was tyrosine-phosphorylated in response to TGFalpha had reduced activity compared with the nontyrosine-phosphorylated PKCdelta. Treatment of keratinocytes expressing a normal epidermal growth factor receptor (EGFR) with TGFalpha or epidermal growth factor for 5 min induced PKCdelta tyrosine phosphorylation. This acute epidermal growth factor treatment did not induce tyrosine phosphorylation of PKCdelta in keratinocytes isolated from waved-2 mice that have a defective epidermal growth factor receptor. In addition, the level of PKCdelta tyrosine phosphorylation in v-rasHa-transduced keratinocytes from EGFR null mice was substantially lower than in v-rasHa transduced wild type cells, suggesting that activation of the EGFR is important for PKC delta tyrosine phosphorylation in ras transformation. However, purified EGFR did not phosphorylate recombinant PKC delta in vitro, whereas members of the Src family (c-Src, c-Fyn) and membrane preparations from keratinocytes did. Furthermore, clearing c-Src or c-Fyn from keratinocyte membrane lysates decreased PKCdelta tyrosine phosphorylation, and c-Src and c-Fyn isolated from keratinocytes treated with TGFalpha had increased kinase activity. Acute or chronic treatment with TGFalpha did not induce significant PKCdelta translocation in contrast to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, which induced both translocation and tyrosine phosphorylation of PKCdelta. This suggests that TGFalpha-induced tyrosine phosphorylation of PKC delta results from the activation of a t Topics: Alleles; Aluminum Compounds; Animals; Animals, Newborn; Cell Line; Cell Transformation, Neoplastic; Epidermal Growth Factor; ErbB Receptors; Fluorides; Gene Expression; Genes, ras; GTP-Binding Proteins; Isoenzymes; Keratinocytes; Mice; Mice, Inbred BALB C; Mice, Mutant Strains; Mutagenesis; Phosphorylation; Phosphotyrosine; Protein Kinase C; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-fyn; Proto-Oncogene Proteins pp60(c-src); Recombinant Proteins; Signal Transduction; Spodoptera; Transfection; Transforming Growth Factor alpha; Tyrosine | 1996 |
Tyrosine kinase-activating growth factors potentiate thrombin- and AIF4- -induced phosphoinositide breakdown in hamster fibroblasts. Evidence for positive cross-talk between the two mitogenic signaling pathways.
Basic fibroblast growth factor (FGF) and alpha-thrombin can stimulate DNA synthesis in Chinese hamster fibroblasts (CCL39) by two separate signaling pathways (Chambard, J.C., Paris, S., L'Allemain, G., and Pouysségur, J. (1987) Nature 326, 800-803) but can also act synergistically. We have examined whether this synergism might depend upon changes in inositol lipid metabolism. Indeed, FGF, which has no effect on its own on phosphoinositide hydrolysis, potentiates (by up to 2-fold) thrombin-induced formation of inositol phosphates. This enhancing effect is also observed upon direct activation by AIF4- of the GTP-binding protein coupled to phospholipase C, and is best revealed when phospholipase C is weakly stimulated. With low thrombin concentrations or with AIF4-, the formation of inositol phosphates is immediately increased with a marked reduction of the initial lag, whereas at high thrombin concentrations, the stimulation by FGF becomes pronounced only after desensitization of phospholipase C to thrombin. FGF-induced potentiation is not mimicked by calcium ionophores, but is likewise elicited by epidermal growth factor, platelet-derived growth factor, and to a lesser extent by insulin, other growth factors known to activate receptor tyrosine kinases. We therefore propose that the tyrosine kinase-activating growth factors enhance the coupling between GTP-binding protein and phospholipase C, presumably through the phosphorylation of one of these two proteins. Treatment of cells with pertussis toxin attenuates thrombin-induced phospholipase C activity but does not impede the potentiation by FGF. Comparison of the potentiating effects of FGF on inositol phosphate formation and on DNA synthesis suggests than an increased production of second messengers by the inositol lipid pathway in the first hours of stimulation might be, at least in part, responsible for the synergistic actions of FGF and thrombin on DNA synthesis. Topics: Aluminum; Aluminum Compounds; Animals; Cell Line; Cricetinae; Drug Synergism; Enzyme Activation; Epidermal Growth Factor; Fibroblast Growth Factors; Fibroblasts; Fluorides; Fluorine; Growth Substances; Phosphatidylinositols; Platelet-Derived Growth Factor; Protein-Tyrosine Kinases; Thrombin; Type C Phospholipases | 1988 |