epidermal-growth-factor has been researched along with procyanidin* in 2 studies
2 other study(ies) available for epidermal-growth-factor and procyanidin
Article | Year |
---|---|
NADPH oxidase 1: A target in the capacity of dimeric ECG and EGCG procyanidins to inhibit colorectal cancer cell invasion.
Colorectal cancer (CRC) is prevalent worldwide. Dietary consumption of procyanidins has been linked to a reduced risk of developing CRC. The epidermal growth factor (EGF) receptor (EGFR) signaling pathway is frequently dysregulated in CRC. Our earlier research showed that the procyanidin dimers of epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), through their interaction with lipid rafts, inhibit the EGFR signaling pathway and decrease CRC cell growth. The process of cancer cell invasion and metastasis involves matrix metalloproteinases (MMPs), which are partially EGFR-regulated. This study investigated whether ECG and EGCG dimers can inhibit EGF-induced CRC cell invasion by suppressing the redox-regulated activation of the EGFR/MMPs pathway. Both dimers mitigated EGF-induced cell invasion and the associated increase of MMP-2/9 expression and activity in different CRC cell lines. In Caco-2 cells, both dimers inhibited the activation of the EGFR and downstream of NF-κB, ERK1/2 and Akt, which was associated with decreased MMP-2/9 transcription. EGF induced a rapid NOX1-dependent oxidant increase, which was diminished by both ECG and EGCG dimers and NOX inhibitors (apocynin, Vas-2870, DPI). Both dimers inhibited NOX1 gene expression, as well as NOX1 activity with evidence of direct binding to NOX1. Both dimers, all NOX chemical inhibitors and NOX1 silencing inhibited EGF-mediated activation of the EGFR signaling pathway and the increased MMP-2/9 mRNA levels and activity. Pointing to the relevance of NOX1 on ECG and EGCG dimer effects on CRC invasiveness, silencing of NOX1 also inhibited EGF-stimulated Caco-2 cell invasion. In summary, ECG and EGCG dimers can act inhibiting CRC cell invasion/metastasis both, by downregulating MMP-2 and MMP-9 expression via a NOX1/EGFR-dependent mechanism, and through a direct inhibitory effect on MMPs enzyme activity. Topics: Caco-2 Cells; Catechin; Cell Line, Tumor; Colorectal Neoplasms; Electrocardiography; Epidermal Growth Factor; ErbB Receptors; Humans; Matrix Metalloproteinase 2; NADPH Oxidase 1; Neoplasm Invasiveness; Proanthocyanidins | 2023 |
3-O-galloylated procyanidins from Rumex acetosa L. inhibit the attachment of influenza A virus.
Infections by influenza A viruses (IAV) are a major health burden to mankind. The current antiviral arsenal against IAV is limited and novel drugs are urgently required. Medicinal plants are known as an abundant source for bioactive compounds, including antiviral agents. The aim of the present study was to characterize the anti-IAV potential of a proanthocyanidin-enriched extract derived from the aerial parts of Rumex acetosa (RA), and to identify active compounds of RA, their mode of action, and structural features conferring anti-IAV activity. In a modified MTT (MTTIAV) assay, RA was shown to inhibit growth of the IAV strain PR8 (H1N1) and a clinical isolate of IAV(H1N1)pdm09 with a half-maximal inhibitory concentration (IC50) of 2.5 µg/mL and 2.2 µg/mL, and a selectivity index (SI) (half-maximal cytotoxic concentration (CC50)/IC50)) of 32 and 36, respectively. At RA concentrations>1 µg/mL plaque formation of IAV(H1N1)pdm09 was abrogated. RA was also active against an oseltamivir-resistant isolate of IAV(H1N1)pdm09. TNF-α and EGF-induced signal transduction in A549 cells was not affected by RA. The dimeric proanthocyanidin epicatechin-3-O-gallate-(4β→8)-epicatechin-3'-O-gallate (procyanidin B2-di-gallate) was identified as the main active principle of RA (IC50 approx. 15 µM, SI≥13). RA and procyanidin B2-di-gallate blocked attachment of IAV and interfered with viral penetration at higher concentrations. Galloylation of the procyanidin core structure was shown to be a prerequisite for anti-IAV activity; o-trihydroxylation in the B-ring increased the anti-IAV activity. In silico docking studies indicated that procyanidin B2-di-gallate is able to interact with the receptor binding site of IAV(H1N1)pdm09 hemagglutinin (HA). In conclusion, the proanthocyanidin-enriched extract RA and its main active constituent procyanidin B2-di-gallate protect cells from IAV infection by inhibiting viral entry into the host cell. RA and procyanidin B2-di-gallate appear to be a promising expansion of the currently available anti-influenza agents. Topics: Animals; Antiviral Agents; Biflavonoids; Binding Sites; Catechin; Cell Line; Cell Survival; Cells, Cultured; Cytopathogenic Effect, Viral; Dogs; Epidermal Growth Factor; Hemagglutinin Glycoproteins, Influenza Virus; Humans; Influenza A virus; Models, Molecular; Molecular Conformation; Plant Extracts; Proanthocyanidins; Protein Binding; Rumex; Structure-Activity Relationship; Tumor Necrosis Factor-alpha; Virus Attachment | 2014 |