epidermal-growth-factor and phosphatidylbutanol

epidermal-growth-factor has been researched along with phosphatidylbutanol* in 3 studies

Other Studies

3 other study(ies) available for epidermal-growth-factor and phosphatidylbutanol

ArticleYear
Participation of phospholipase D and alpha/beta-protein kinase C in growth factor-induced signalling in C3H10T1/2 fibroblasts.
    Biochimica et biophysica acta, 2003, Jun-10, Volume: 1632, Issue:1-3

    We have studied phospholipase D (PLD) activation in relation to protein kinase C (PKC) and the involvement of PLD in extracellularly regulated kinase 1 (MAPK) (ERK1) activation and c-fos mRNA expression in C3H/10T1/2 (Cl8) fibroblasts. In these cells, the PLD activity was significantly increased by porcine platelet-derived growth factor (PDGF-BB), phorbol 12-myristate 13-acetate (PMA), and epidermal growth factor (EGF). PLD activation by PDGF-BB and PMA, but not EGF, was inhibited in Cl8 cells expressing the HAbetaC2-1 peptide (Cl8 HAbetaC2-1 cells), with a sequence (betaC2-1) shown to bind receptor for activated C kinase 1 (RACK1) and inhibit c-PKC-mediated cell functions [Science 268 (1995) 247]. A role of alpha-PKC in PLD activation is further underscored by co-immunoprecipitation of alpha-PKC with PLD1 and PLD2 in non-stimulated as well as PMA- and PDGF-BB-stimulated Cl8 cells. However, only PKC in PLD1 precipitates was activated by these agonists, while the PKC in the PLD2 precipitates was constitutively activated. The c-fos mRNA levels in Cl8 cells increased more than 30-fold in response to either PDGF-BB, EGF, or PMA. Approximately 60% inhibition of this increase in c-fos mRNA levels was observed in Cl8 HAbetaC2-1 cells. Formation of phosphatidylbutanol (PtdBut) at the expense of phosphatidic acid (PtdH) in the presence of n-butanol inhibited ERK1 activation and c-fos mRNA expression in PDGF-BB-treated Cl8 cells. ERK activation by PMA was unaffected by n-butanol in Cl8 cells but almost abolished by n-butanol in Cl8 HAbetaC2-1 cells, showing that ERK activation by PMA is heavily dependent on PKC and PLD1. In contrast, ERK activation by EGF in both cell types was not sensitive to n-butanol. These results indicate (1) a role of a functional interaction between the RACK1 scaffolding protein and a alphaPKC-PLD complex for achieving full PLD activity in PDGF-BB- and PMA-stimulated Cl8 cells; (2) PLD-mediated PtdH formation is needed for optimal ERK1 activation by PDGF-BB and maximal increase in c-fos mRNA expression. These findings place PLD as an important component in PDGF-BB- and PMA-stimulated intracellular signalling leading to gene activation in Cl8 cells, while EGF does not require PLD.

    Topics: 1-Butanol; Animals; Cell Line; Enzyme Activation; Enzyme Inhibitors; Epidermal Growth Factor; Fibroblasts; Glycerophospholipids; Growth Substances; Mice; Mice, Inbred C3H; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Peptides; Phosphatidic Acids; Phospholipase D; Platelet-Derived Growth Factor; Protein Kinase C; Proto-Oncogene Proteins c-fos; RNA, Messenger; Signal Transduction; Swine; Tetradecanoylphorbol Acetate

2003
Epidermal-growth-factor-induced production of phosphatidylalcohols by HeLa cells and A431 cells through activation of phospholipase D.
    The Biochemical journal, 1992, Oct-01, Volume: 287 ( Pt 1)

    In response to epidermal growth factor (EGF), HeLa cells and A431 cells rapidly accumulate substantial amounts of phosphatidic acid (up to 0.16 and 0.2 micrograms/10(6) cells respectively), which represents approx. 0.17% of total phospholipid. Phosphatidic acid may be a potential product of diacylglycerol kinase and/or of phospholipase D. To evaluate the contribution of phospholipase D, the phosphatidyl-transfer reaction to a primary alcohol (mostly butan-1-ol; 0.2%) was measured; this reaction is known to be mediated exclusively by phospholipase D in intact cells. In HeLa and in A431 cells prelabelled with [1-14C]oleic acid, EGF (10 and 100 nM respectively) caused a 3-fold increase in radioactive phosphatidylbutanol within 5 min at the expense of labelled phosphatidic acid. Dose-response relationships showed 10 nM- and 100 nM-EGF to be maximally effective in HeLa cells and A431 cells respectively. Mass determinations showed that the phosphatidylbutanol formed within 5 min represented only part of the phosphatidic acid. Depletion of protein kinase C by pretreatment of A431 cells for 17 h with the phorbol ester phorbol 12-myristate 13-acetate (0.1 microM) did not impair EGF-induced formation of phosphatidylbutanol, thus indicating that the reaction was independent of this enzyme. Since phosphatidic acid is suggested to exert second-messenger functions as well as to induce biophysical changes in cellular membranes, its formation, including that via the phospholipase D pathway, may represent an important link between extracellular signals and intracellular targets.

    Topics: Diglycerides; Enzyme Activation; Epidermal Growth Factor; Glycerophospholipids; HeLa Cells; Humans; Phosphatidic Acids; Phosphatidylinositols; Phospholipase D; Protein Kinase C; Tetradecanoylphorbol Acetate; Tumor Cells, Cultured

1992
Epidermal growth factor increases sn-1,2-diacylglycerol levels and activates phospholipase D-catalysed phosphatidylcholine breakdown in Swiss 3T3 cells in the absence of inositol-lipid hydrolysis.
    The Biochemical journal, 1992, Jul-01, Volume: 285 ( Pt 1)

    Addition of epidermal growth factor (EGF) to quiescent Swiss 3T3 cells resulted in a sustained increase in cellular diacylglycerol (DG) content in the absence of inositol-lipid hydrolysis. In the presence of non-cytotoxic concentrations of butan-1-ol, EGF stimulated the formation of phosphatidylbutanol, indicating that the EGF receptor was able to couple to the activation of phospholipase D (PLD). EGF-stimulated release of choline from Swiss 3T3 cells suggested that the major substrate for this PLD was phosphatidylcholine. Unlike bombesin-stimulated PLD activity, the response to EGF was not inhibited by a selective protein kinase C (PKC) inhibitor (Ro-31-8220), suggesting that it was not dependent on PKC activation. Pre-treatment of Swiss 3T3 cells with the EGF-receptor tyrosine kinase inhibitor AG18 selectively inhibited EGF-stimulated PLD activity; bombesin-stimulated PLD activity was unaffected. Butan-1-ol inhibited phorbol ester- and bombesin-stimulated DG formation suggesting a role for a coupled PLD/phosphatidate phosphohydrolase pathway; in contrast, EGF-stimulated DG formation was unaffected.

    Topics: 3T3 Cells; Animals; Bombesin; Catalysis; Diglycerides; Enzyme Activation; Epidermal Growth Factor; Glycerophospholipids; Indoles; Inositol Phosphates; Mice; Phosphatidic Acids; Phosphatidylcholines; Phospholipase D; Protein Kinase C; Tetradecanoylphorbol Acetate

1992