epidermal-growth-factor has been researched along with manoalide* in 1 studies
1 other study(ies) available for epidermal-growth-factor and manoalide
Article | Year |
---|---|
Manoalide, a natural sesterterpenoid that inhibits calcium channels.
Manoalide is a marine natural product that has anti-inflammatory and anti-proliferative activities and is an irreversible inhibitor of phospholipase A2 and phospholipase C. It is now shown that the compound is a potent inhibitor of Ca2+ mobilization in several cell types. In A431 cells the increase in epidermal growth factor receptor-mediated Ca2+ entry and release from intracellular Ca2+ stores were blocked by manoalide in a time-dependent manner with an IC50 of 0.4 microM. The effect of manoalide on phosphoinositide metabolism, namely the production of inositol monophosphate, did not coincide with its effect on the epidermal growth factor response. In GH# cells, manoalide blocked the thyrotropin-releasing hormone-dependent release of Ca2+ from intracellular stores without inhibition of the formation of inositol phosphates from phosphatidylinositol 4,5-bisphosphate. Manoalide also blocked the K+ depolarization-activated Ca2+ channel in these cells as well as the activation of the channel by Bay K8644 with an IC50 of 1 microM. In addition, manoalide also inhibited the Ca2+ influx induced by concanavalin A in mouse spleen cells in a time- and temperature-sensitive manner with an IC50 of 0.07 microM. However, neither forskolin-activated adenylate cyclase in A431 cells nor the distribution of the potential sensitive dye, 3,3'-dipropylthiodicarbocyanide iodide in GH3 cells was affected by manoalide. Thus, manoalide acts as a Ca2+ channel inhibitor in all cells examined. This action may account for its effects on inflammation and proliferation and may be independent of its effect on phospholipases. Topics: Animals; Calcium; Calcium Channel Blockers; Carcinoma, Squamous Cell; Cell Line; Colforsin; Concanavalin A; Cyclic AMP; Epidermal Growth Factor; Humans; Inositol Phosphates; Ion Channels; Kinetics; Lymphocytes; Mice; Terpenes | 1987 |