epidermal-growth-factor and 3--4--7-trihydroxyisoflavone

epidermal-growth-factor has been researched along with 3--4--7-trihydroxyisoflavone* in 1 studies

Other Studies

1 other study(ies) available for epidermal-growth-factor and 3--4--7-trihydroxyisoflavone

ArticleYear
7,3',4'-Trihydroxyisoflavone inhibits epidermal growth factor-induced proliferation and transformation of JB6 P+ mouse epidermal cells by suppressing cyclin-dependent kinases and phosphatidylinositol 3-kinase.
    The Journal of biological chemistry, 2010, Jul-09, Volume: 285, Issue:28

    Numerous in vitro and in vivo studies have shown that isoflavones exhibit anti-proliferative activity against epidermal growth factor (EGF) receptor-positive malignancies of the breast, colon, skin, and prostate. 7,3',4'-Trihydroxyisoflavone (7,3',4'-THIF) is one of the metabolites of daidzein, a well known soy isoflavone, but its chemopreventive activity and the underlying molecular mechanisms are poorly understood. In this study, 7,3',4'-THIF prevented EGF-induced neoplastic transformation and proliferation of JB6 P+ mouse epidermal cells. It significantly blocked cell cycle progression of EGF-stimulated cells at the G(1) phase. As shown by Western blot, 7,3',4'-THIF suppressed the phosphorylation of retinoblastoma protein at Ser-795 and Ser-807/Ser-811, which are the specific sites of phosphorylation by cyclin-dependent kinase (CDK) 4. It also inhibited the expression of G(1) phase-regulatory proteins, including cyclin D1, CDK4, cyclin E, and CDK2. In addition to regulating the expression of cell cycle-regulatory proteins, 7,3',4'-THIF bound to CDK4 and CDK2 and strongly inhibited their kinase activities. It also bound to phosphatidylinositol 3-kinase (PI3K), strongly inhibiting its kinase activity and thereby suppressing the Akt/GSK-3beta/AP-1 pathway and subsequently attenuating the expression of cyclin D1. Collectively, these results suggest that CDKs and PI3K are the primary molecular targets of 7,3',4'-THIF in the suppression of EGF-induced cell proliferation. These insights into the biological actions of 7,3',4'-THIF provide a molecular basis for the possible development of new chemoprotective agents.

    Topics: Animals; Anticarcinogenic Agents; Cell Line, Tumor; Cell Proliferation; Cyclin-Dependent Kinases; Epidermal Growth Factor; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Humans; Isoflavones; Mice; Phosphatidylinositol 3-Kinases; Retinoblastoma Protein; Serine; Skin Neoplasms

2010